精英家教网 > 高中数学 > 题目详情

给出四个命题:

①平行于同一平面的两个不重合的平面平行; ②平行于同一直线的两个不重合的平面平行;

③垂直于同一平面的两个不重合的平面平行; ④垂直于同一直线的两个不重合的平面平行;

其中真命题的个数是(   )

A.1          B.2           C.3           D.4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、给出下列四个命题:
①已知集合A⊆{1,2,3,4},且A中至少含有一个奇数,则这样的集合A有12个;
②任意的三角形ABC中,有cos2A<cos2B的充要条件是A>B;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角;
其中真命题的序号是
①②
(要求写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①设x1,x2∈R,则x1>1且x2>1的充要条件是x1+x2>2且x1x2>1;
②任意的锐角三角形ABC中,有sinA>cosB成立;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角.
其中真命题的序号是
 
(要求写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列四个命题:
①已知集合A⊆{1,2,3,4},且A中至少含有一个奇数,则这样的集合A有12个;
②任意的三角形ABC中,有cos2A<cos2B的充要条件是A>B;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角;
其中真命题的序号是______(要求写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:

的充要条件;

② 已知A、B是双曲线实轴的两个端点,MN是双曲线上关于x轴对称的两点,直线AMBN的斜率分别为k1k2,且的最小值为2,则双曲线的离心率e=

③ 取一根长度为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率是

④ 一个圆形纸片,圆心为OF为圆内一定点,M是圆周上一动点,把纸片折叠使MF重合,然后抹平纸片,折痕为CD,设CDOM交于P,则P的轨迹是椭圆。

其中真命题的序号是                 。(填上所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:2010年高考数学专项复习:创新题(3)(解析版) 题型:解答题

给出下列四个命题:
①设x1,x2∈R,则x1>1且x2>1的充要条件是x1+x2>2且x1x2>1;
②任意的锐角三角形ABC中,有sinA>cosB成立;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角.
其中真命题的序号是    (要求写出所有真命题的序号).

查看答案和解析>>

同步练习册答案