精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线.

(1)直线是否过定点?若过定点,求出该定点坐标,若不过定点,请说明理由;

(2)已知点,若直线上存在点满足条件,求实数的取值范围.

【答案】(1)过定点,定点坐标为;(2).

【解析】

(1) 假设直线过定点,则关于恒成立,利用即可结果;(2)直线上存在点,求得 ,故点在以为圆心,2为半径的圆上,根据题意,该圆和直线有交点,即圆心到直线的距离小于或等于半径,由此求得实数的取值范围.

(1)假设直线过定点

,即

关于恒成立,

,∴

所以直线过定点,定点坐标为

(2)已知点,,设点

,∴,∴

所以点的轨迹方程为圆

又点在直线上,

所以直线与圆有公共点,

设圆心到直线的距离为,则

解得实数的范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,那么下列结论中错误的是( )

A. 的极小值点,则在区间上单调递减

B. ,使

C. 函数的图像可以是中心对称图形

D. 的极值点,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若对于恒成立,求实数的取值范围

(2)若对于恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有( )

A. 24B. 28C. 32D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.(12分)
(Ⅰ)求ω;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g(x)在[﹣ ]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,讨论的单调性;

(2)设时,若对任意,存在使,求实数取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数满足约束条件,的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分)
(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;
(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).

(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;

(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.

查看答案和解析>>

同步练习册答案