精英家教网 > 高中数学 > 题目详情

已知n>2,试证:logn(n+1)<log(n-1)n.

 

证法一:∵logn(n+1)- log(n-1)n

=logn(n+1)-

=

∴logn(n+1)<log(n-1)n.

证法二:=logn(n+1)·logn(n-1)

<[Equation.3(logn(n+1)+ logn(n-1))]2

=[Equation.3logn(n2-1)]2<(Equation.3lognn2)2=1.

又logn(n+1)>0, log(n-1)n.>0,

∴logn(n+1)<log(n-1)n.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线方程为y2=4x,过Q(2,0)作直线l.
①若l与x轴不垂直,交抛物线于A、B两点,是否存在x轴上一定点E(m,0),使得∠AEQ=∠BEQ?若存在,求出m的值;若不存在,请说明理由?
②若L与X轴垂直,抛物线的任一切线与y轴和L分别交于M、N两点,则自点M到以QN为直径的圆的切线长|MT|为定值,试证之.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点分别为F1(-c,0)、F2(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)设E为“黄金椭圆”,问:是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-2
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)设E为“黄金椭圆”,点M是△PF1F2的内心,连接PM并延长交F1F2于N,求
|PM|
|PN|
的值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市东城区东直门中学高三数学提高测试试卷5(理科)(解析版) 题型:解答题

已知抛物线方程为y2=4x,过Q(2,0)作直线l.
①若l与x轴不垂直,交抛物线于A、B两点,是否存在x轴上一定点E(m,0),使得∠AEQ=∠BEQ?若存在,求出m的值;若不存在,请说明理由?
②若L与X轴垂直,抛物线的任一切线与y轴和L分别交于M、N两点,则自点M到以QN为直径的圆的切线长|MT|为定值,试证之.

查看答案和解析>>

科目:高中数学 来源:2011年天津市耀华中学高考数学二模试卷(文科)(解析版) 题型:解答题

已知抛物线方程为y2=4x,过Q(2,0)作直线l.
①若l与x轴不垂直,交抛物线于A、B两点,是否存在x轴上一定点E(m,0),使得∠AEQ=∠BEQ?若存在,求出m的值;若不存在,请说明理由?
②若L与X轴垂直,抛物线的任一切线与y轴和L分别交于M、N两点,则自点M到以QN为直径的圆的切线长|MT|为定值,试证之.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

已知抛物线方程为y2=4x,过Q(2,0)作直线l.
①若l与x轴不垂直,交抛物线于A、B两点,是否存在x轴上一定点E(m,0),使得∠AEQ=∠BEQ?若存在,求出m的值;若不存在,请说明理由?
②若L与X轴垂直,抛物线的任一切线与y轴和L分别交于M、N两点,则自点M到以QN为直径的圆的切线长|MT|为定值,试证之.

查看答案和解析>>

同步练习册答案