【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且b2+c2﹣a2=bc.
(1)求角A的大小;
(2)若a= ,且△ABC的面积为 ,求△ABC的周长.
【答案】
(1)解:∵b2+c2﹣a2=bc.
∴cosA= = ,
∵A∈(0,π),
∴A=
(2)解:∵a= ,A= ,由三角形面积公式可得: bcsin = ,解得bc=6,
∴由余弦定理可得:b2+c2﹣2bccos =7,即b2+c2﹣bc=(b+c)2﹣3bc=(b+c)2﹣18=7,
∴解得:b+c=5,
∴三角形的周长为a+b+c=5+
【解析】(1)由已知利用余弦定理可求cosA= ,结合范围A∈(0,π),即可得解A的值.(2)由已知利用三角形面积公式可得bc=6,由余弦定理可得b+c=5,即可得解三角形的周长.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设AB=ykm,并在公路北侧建造边长为xkm的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且∠ABC=60°。
(1)求y关于x的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:x取何值时,该公司建设中转站围墙和两条道路总造价M最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生身高情况,某校以 的比例对全校1000名学生按性别进行分层抽样调查,已知男女比例为 ,测得男生身高情况的频率分布直方图(如图所示):
(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);
(2)从样本中身高在 之间的男生中任选2人,求至少有1人身高在 之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax2﹣2(a+1)x+3(a∈R).
(1)若函数f(x)在 单调递减,求实数a的取值范围;
(2)令h(x)= ,若存在 ,使得|h(x1)﹣h(x2)|≥ 成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com