精英家教网 > 高中数学 > 题目详情
表示不同直线,M表示平面,给出四个命题:①若∥M,∥M,则 或相交或异面;②若M,,则∥M;③,则;④ ⊥M,⊥M,则。其中正确命题为
A.①②B.②③C.③④D.①④
D

试题分析:命题①显然正确;命题②还可能,错误;命题③,在空间中不成立,可能则 或相交或异面;命题④正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

等边三角形的边长为3,点分别是边上的点,且满足(如图1).将△沿折起到△的位置,使二面角成直二面角,连结 (如图2).
(1)求证:平面
(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱柱中,底面,底面为菱形,交点,已知,.

(1)求证:平面
(2)求证:∥平面
(3)设点内(含边界),且,说明满足条件的点的轨迹,并求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在三棱柱中,,点分别是的中点.
 
(1)求证:平面∥平面
(2)求证:平面⊥平面
(3)若,求异面直线所成的角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知三棱柱ABCA1B1C1,

(1)若M、N分别是AB,A1C的中点,求证:MN∥平面BCC1B1;
(2)若三棱柱ABCA1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点

(1)求证:CE∥平面PAD;
(2)求证:平面EFG⊥平面EMN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直四棱柱ABCDA1B1C1D1中,底面ABCD是菱形.求证:平面B1AC∥平面DC1A1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四面体ABCD中作截面PQR,若PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K.

求证:M、N、K三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面和两条不重合的直线,则下列四个命题正确的是(     )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

同步练习册答案