【题目】已知数列中,.若对于任意的,不等式恒成立,则实数的取值范围为
A. B.
C. D.
【答案】C
【解析】
根据题意,数列{an}中,n(an+1﹣an)=an+1,可得,利用迭代法和裂项求和,以及放缩法可得<3,则原不等式可转化为2t2+(a+1)t﹣a2+a≤0,在t∈[0,1]上恒成立,构造函数f(a)=2t2+(a+1)t﹣a2+a,t∈[0,1],可得,解得即可.
根据题意,数列{an}中,n(an+1﹣an)=an+1,
∴nan+1﹣(n+1)an=1,
∴,
∴=(﹣)+(﹣)+…+(a2﹣a1)+a1,
=()+()+…+(1﹣)+2=3﹣<3,
∵<﹣2t2﹣(a+1)t+a2﹣a+3恒成立,
∴3≤﹣2t2﹣(a+1)t+a2﹣a+3
∴2t2+(a+1)t﹣a2+a≤0,在t∈[0,1]上恒成立,
设f(t)=2t2+(a+1)t﹣a2+a,t∈[0,1],
∴,
即,
解得a≤﹣1或a≥3,
故答案为:C.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com