精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=logax(a>0,且a≠1),如果对于任意的x∈[$\frac{1}{3}$,2]都有-1≤f(x)≤1成立,求实数a的取值范围.

分析 利用分类思想,函数的单调性转化为$\left\{\begin{array}{l}{a>1}\\{-lo{g}_{a}3≥-1}\end{array}\right.$或$\left\{\begin{array}{l}{0<a<1}\\{lo{g}_{a}2≥-1}\\{-lo{g}_{a}3≤1}\end{array}\right.$求解即可.

解答 解:∵函数f(x)=logax(a>0,且a≠1),
x∈[$\frac{1}{3}$,2],
∴当a>1时,-loga3≤logax≤loga2,
∵-1≤f(x)≤1,
∴$\left\{\begin{array}{l}{a>1}\\{-lo{g}_{a}3≥-1}\end{array}\right.$,
即a≥3;
当0<a<1时,loga2≤logax≤-loga3,
∵-1≤f(x)≤1,
∴$\left\{\begin{array}{l}{0<a<1}\\{lo{g}_{a}2≥-1}\\{-lo{g}_{a}3≤1}\end{array}\right.$,
即0$<a≤\frac{1}{3}$;
实数a的取值范围:a≥3或0$<a≤\frac{1}{3}$.

点评 本题考察了不等式的恒成立问题,函数的性质,转化思想,属于中档题,关键是正确了,理解题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|log4x<-1},B=$\{x|{2^x}≤\sqrt{2}\}$,命题p:?x∈A,2x<3x;命题q:?x∈B,x3=1-x2,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有三个结论:①$\frac{π}{6}$与$\frac{5}{6}$π的正弦线长度相等:②$\frac{π}{6}$与$\frac{7}{6}$π的正弦线长度相等:③$\frac{π}{4}$与$\frac{9}{4}$π的正弦线长度等.其中正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在非等腰△ABC中,A,B,C的对边分别是a,b,c,A+C=2B,2sinc-3sinA=sinB.
(1)求$\frac{c}{a}$的值;
(2)若△ABC的面积为6$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在长方体ABCD-A1B1C1D1中,BC=1.BB1=2.E,F分别为棱A1B1,CD的中点,则直线AB和EF的位置关系是垂直;EF的长度为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{1,x≤1}\\{-1,x>1}\end{array}\right.$则不等式xf(x+1)<x2-2的解集为(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且对任意正整数n,都有Sn=$\frac{{a}_{n}-1}{λ}$(λ≠0.1).
(Ⅰ)求证:{an}为等比数列;
(Ⅱ)若λ=$\frac{1}{2}$,且bn=$\frac{1}{lo{g}_{4}{a}_{n}•lo{g}_{4}{a}_{n+1}}$,{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}中.a1=$\frac{3}{5}$,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$,则数列{an}的通项公式为an=$\frac{3}{6n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知焦点在x轴上,长、短半轴之和为10,焦距为4$\sqrt{5}$,则椭圆的方程为(  )
A.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{36}$=1C.$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{y}^{2}}{6}$+$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

同步练习册答案