精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,若f(x)﹣f(﹣x)=0有四个不同的根,则m的取值范围是(
A.(0,2e)
B.(0,e)
C.(0,1)
D.(0,

【答案】D
【解析】解:∵f(x)﹣f(﹣x)=0有四个不同的根,

且y=f(x)与y=f(﹣x)的图象关于y轴对称,

∴f(x)=f(﹣x)在(0,+∞)上有2解,

即lnx=﹣ 有2解,∴﹣m=xlnx有2解,

令g(x)=xlnx,则g′(x)=lnx+1,

∴当0<x 时,g′(x)<0,当x> 时,g′(x)>0,

∴g(x)在(0, )上单调递减,在( ,+∞)上单调递增,

当x= 时,f(x)取得极小值f( )=﹣

作出g(x)的大致函数图象如图所示:

∵﹣m=xlnx有两解,

∴﹣ <﹣m<0,即0<m<

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 ,记关于 的不等式 的解集为
(1)若 ,求实数 的取值范围;
(2)若 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分别为边AC,AB的中点,点F,G分别为线段CD,BE的中点.将△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.点Q为线段A1B上的一点,如图2.
(Ⅰ)求证:A1F⊥BE;
(Ⅱ)线段A1B上是否存在点Q使得FQ∥平面A1DE?若存在,求出A1Q的长,若不存在,请说明理由;
(Ⅲ)当 时,求直线GQ与平面A1DE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)试比较f(﹣1)与f(a)的大小;
(Ⅱ)当a≥﹣1时,若函数f(x)的图象和x轴围成一个三角形,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式y=axb(a,b为大于0的常数).现随机抽取6件合格产品,测得数据如下:

尺寸(mm)

38

48

58

68

78

88

质量(g)

16.8

18.8

20.7

22.4

24.0

25.5

对数据作了初步处理,相关统计量的值如下表:

75.3

24.6

18.3

101.4

(Ⅰ)根据所给数据,求y关于x的回归方程;
(Ⅱ)按照某项指标测定,当产品质量与尺寸的比在区间( )内时为优等品.现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望.
附:对于一组数据(v1 , u1),(v2 , u2),…,(vn , un),其回归直线u=α+βv的斜率和截距的最小二乘估计分别为 = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C:y2=4x,M:(x﹣1)2+y2=4(x≥1),直线l与曲线C相交于A、B两点,O为坐标原点.
(Ⅰ)若 ,求证:直线l恒过定点,并求出定点坐标;
(Ⅱ)若直线l与曲线C1相切,M(1,0),求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C所对的边分别为a,b,c,且A=2C.
(1)若△ABC为锐角三角形,求 的取值范围;
(2)若b=1,c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是 (t为参数).
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)设点P(m,0),若直线l与曲线C交于A,B两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设样本数据x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),则y1 , y2 , …y2017的方差为

查看答案和解析>>

同步练习册答案