【题目】已知数列{an}前n项和Sn满足:2Sn+an=1
(1)求数列{an}的通项公式;
(2)设bn= ,数列{bn}的前n项和为Tn , 求证:Tn< .
【答案】
(1)解:∵2Sn+an=1,
∴当n≥2时,2Sn﹣1+an﹣1=1,
∴2an+an﹣an﹣1=0,化为 .
当n=1时,2a1+a1=1,∴a1= .
∴数列{an}是等比数列,首项与公比都为 .
∴ .
(2)证明:bn=
=
=
= ,
∴数列{bn}的前n项和为Tn= + +…+
= .
∴Tn< .
【解析】(1)利用递推式可得: .再利用等比数列的通项公式即可得出;(2)由(1)可得bn= = ,;利用“裂项求和”即可得出数列{bn}的前n项和为Tn , 进而得到证明.
【考点精析】利用数列的前n项和和数列的通项公式对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】设关于的一元二次方程.
(1)若是从0,1,2,3四个数中任取的一个数, 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若时从区间上任取的一个数, 是从区间上任取的一个数,求上述方程有实根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x+2﹣x ,
(1)判断函数的奇偶性;
(2)用函数单调性定义证明:f(x)在(0,+∞)上为单调增函数;
(3)若f(x)=52﹣x+3,求x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将数字1,2,3,…, ()全部填入一个2行列的表格中,每格填一个数字,第一行填入的数字依次为, ,…, ,第二行填入的数字依次为, ,…, .记.
(Ⅰ)当时,若, , ,写出的所有可能的取值;
(Ⅱ)给定正整数.试给出, ,…, 的一组取值,使得无论, ,…, 填写的顺序如何, 都只有一个取值,并求出此时的值;
(Ⅲ)求证:对于给定的以及满足条件的所有填法, 的所有取值的奇偶性相同.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(是大于的常数)的左、右顶点分别为、,点是椭圆上位于轴上方的动点,直线、与直线分别交于、两点(设直线的斜率为正数).
(Ⅰ)设直线、的斜率分别为, ,求证为定值.
(Ⅱ)求线段的长度的最小值.
(Ⅲ)判断“”是“存在点,使得是等边三角形”的什么条件?(直接写出结果)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ,过点作圆的切线,切点分别为, ,直线恰好经过椭圆的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的右焦点作两条互相垂直的弦, ,设, 的中点分别为, ,证明:直线必过定点,并求此定点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com