精英家教网 > 高中数学 > 题目详情
14.已知α∈(π,$\frac{3π}{2}$),且sinα=-$\frac{5}{13}$,则cosα=$-\frac{12}{13}$,tanα=$\frac{5}{12}$.

分析 直接利用同角三角函数的基本关系式求解函数值即可.

解答 解:α∈(π,$\frac{3π}{2}$),且sinα=-$\frac{5}{13}$,则cosα=-$\sqrt{1-{sin}^{2}α}$=-$\frac{12}{13}$.
tanα=$\frac{sinα}{cosα}$=$\frac{5}{12}$.
故答案为:$-\frac{12}{13}$;$\frac{5}{12}$.

点评 本题考查同角三角函数的基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列表述正确的是(  )
①归纳推理是由部分到整体的推理;      
②合情推理的结果一定是正确的;
③演绎推理是由一般到特殊的推理;      
④类比推理是由特殊到一般的推理;
⑤类比推理是由特殊到特殊的推理.
A.①②③B.②③④C.②④⑤D.①③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)若x>0,y>0,x+y=1,求证:$\frac{1}{x}$+$\frac{1}{y}$≥4.
(2)设x,y为实数,若x2+y2+xy=1,求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时f(x)<0恒成立.
(1)证明函数f(x)是R上的单调减函数;
(2)解关于x的不等式$\frac{1}{2}$f(-2x2)-f(x)>$\frac{1}{2}$f(4x)-f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x-1-1|.
(1)作出函数y=f(x)的图象;
(2)若a<c,且f(a)>f(c),求证:2a+2c<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}中,前三项分别是x,2x,4x-2,数列{an}的前n项和为Sn
(1)求x的值,数列{an}的通项公式an及其前n项和Sn
(2)若数列{bn}满足bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,且Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={x|$\frac{{x}^{2}}{2}$+y2=1},B={y|y=x2-1},则A∩B=(  )
A.[-1,$\sqrt{2}$]B.{(-$\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$)}
C.{(-$\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),(0,1)}D.[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)若函数f(x)=1g(ax2+ax+2)的定义域为实数集R,求实数a的取值范围;
(2)若函数f(x)=1g(ax2+ax+2)的值域为实数集R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=log2(x2+5x-6)的定义域是(  )
A.[-2,3]B.(-6,1]C.(-∞,-1)∪(6,+∞)D.(-∞,-6)∪(1,+∞)

查看答案和解析>>

同步练习册答案