【题目】如图,在棱长均为4的三棱柱中, 分别是和的中点.
(1)求证: 平面
(2)若平面平面,求三棱锥的体积.
【答案】(1)证明见解析(2)8
【解析】试题分析:(1)欲证A1D1∥平面AB1D,根据直线与平面平行的判定定理可知只需证A1D1与平面AB1D内一直线平行,连接DD1,根据中位线定理可知B1D1∥BD,且B1D1=BD,则四边形B1BDD1为平行四边形,同理可证四边形AA1D1D为平行四边形,则A1D1∥AD
又A1D1平面AB1D,AD平面AB1D,满足定理所需条件;
(2)根据面面垂直的性质定理可知AD⊥平面B1C1CB,即AD是三棱锥A﹣B1BC的高,求出三棱锥A﹣B1BC的体积,从而求出三棱锥B1﹣ABC的体积.
试题解析:
(1)证明:如图,连结.在三棱柱中,
因为分别是与的中点,所以,且.
所以四边形为平行四边形,所以,且.
又所以,
所以四边形为平行四边形,所以.
又平面, 平面,故平面.
(2)解:(方法1)
在中,因为, 为的中点,所以.
因为平面平面,交线为, 平面,
所以平面,即是三棱锥的高.
在中,由,得.
在中, ,
所以的面积.
所以三棱锥的体积,即三棱锥的体积.
(方法 2)在 中,因为,
所以为正三角形,因此.
因为平面平面,交线为, 平面,
所以平面,即是三棱锥的高.
在中,由,得的面积.
在中,因为,所以.
所以三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】某中学高二年级开设五门大学先修课程,其中属于数学学科的有两门,分别是线性代数和微积分,其余三门分别为大学物理,商务英语以及文学写作,年级要求每名学生只能选修其中一科,该校高二年级600名学生各科选课人数统计如下表:
其中选修数学学科的人数所占频率为0.6,为了了解学生成绩与选课情况之间的关系,用分层抽样的方法从这600名学生中抽取10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;
(2)从选出的10名学生中随机抽取3人,记为选择线性代数人数与选择微积分人数差的绝对值,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年“一带一路”国际合作高峰论坛于今年5月14日至15日在北京举行.为高标准完成高峰论坛会议期间的志愿服务工作,将从27所北京高校招募大学生志愿者,某调查机构从是否有意愿做志愿者在某高校访问了80人,经过统计,得到如下丢失数据的列联表:(,表示丢失的数据)
无意愿 | 有意愿 | 总计 | |
男 | 40 | ||
女 | 5 | ||
总计 | 25 | 80 |
(1)求出的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;
(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.
附参考公式及数据: ,其中.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥的底面为矩形,D为的中点,AC⊥平面BCC1B1.
(Ⅰ)证明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的长;
(2)求B1D与平面ABB1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“世界睡眠日”定在每年的3月21日,某网站于2017年3月14日到3月20日持续一周网上调查公众日平均睡眠的时间(单位:小时),共有2 000人参加调查,现将数据整理分组后如下表所示.
序号(i) | 分组睡眠时间 | 组中值(mi) | 频数(人数) | 频率(fi) |
1 | [4,5) | 4.5 | 80 | |
2 | [5,6) | 5.5 | 520 | 0.26 |
3 | [6,7) | 6.5 | 600 | 0.30 |
4 | [7,8) | 7.5 | ||
5 | [8,9) | 8.5 | 200 | 0.10 |
6 | [9,10] | 9.5 | 40 | 0.02 |
(1)求出表中空白处的数据,并将表格补充完整.
(2)画出频率分布直方图.
(3)为了对数据进行分析,采用了计算机辅助计算.程序框图如图所示,求输出的S值,并说明S的统计意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数).
(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换得到曲线,若点,直线与交与, ,求, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如表:
停靠时间 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
轮船数量 | 12 | 12 | 17 | 20 | 15 | 13 | 8 | 3 |
(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为小时,求的值;
(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的右焦点为,右顶点为,设离心率为,且满足,其中为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点(0,1)的直线与椭圆交于,两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动,其次在各公园签名的人中按分层抽样的方式抽取10名幸运之星,每人获得一个纪念品,其数据表格如下:
(Ⅰ)求此活动中各公园幸运之星的人数;
(Ⅱ)从乙和丙公园的幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;
(Ⅲ)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):
据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.
附临界值表及公式: ,其中
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com