精英家教网 > 高中数学 > 题目详情

【题目】如图,在棱长均为4的三棱柱中, 分别是的中点.

(1)求证: 平面

(2)若平面平面,求三棱锥的体积.

【答案】(1)证明见解析(2)8

【解析】试题分析:(1)欲证A1D1∥平面AB1D,根据直线与平面平行的判定定理可知只需证A1D1与平面AB1D内一直线平行,连接DD1,根据中位线定理可知B1D1∥BD,且B1D1=BD,则四边形B1BDD1为平行四边形,同理可证四边形AA1D1D为平行四边形,则A1D1∥AD

又A1D1平面AB1D,AD平面AB1D,满足定理所需条件;

(2)根据面面垂直的性质定理可知AD⊥平面B1C1CB,即AD是三棱锥A﹣B1BC的高,求出三棱锥A﹣B1BC的体积,从而求出三棱锥B1﹣ABC的体积.

试题解析:

(1)证明:如图,连结.在三棱柱中,

因为分别是的中点,所以,且.

所以四边形为平行四边形,所以,且.

所以

所以四边形为平行四边形,所以.

平面 平面,故平面.

(2)解:(方法1)

中,因为 的中点,所以.

因为平面平面,交线为 平面,

所以平面,即是三棱锥的高.

中,由,得.

中,

所以的面积.

所以三棱锥的体积,即三棱锥的体积.

(方法 2)在 中,因为

所以为正三角形,因此.

因为平面平面,交线为 平面

所以平面,即是三棱锥的高.

中,由,得的面积.

中,因为,所以.

所以三棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学高二年级开设五门大学先修课程,其中属于数学学科的有两门,分别是线性代数和微积分,其余三门分别为大学物理,商务英语以及文学写作,年级要求每名学生只能选修其中一科,该校高二年级600名学生各科选课人数统计如下表:

其中选修数学学科的人数所占频率为0.6,为了了解学生成绩与选课情况之间的关系,用分层抽样的方法从这600名学生中抽取10人进行分析.

(1)从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;

(2)从选出的10名学生中随机抽取3人,记为选择线性代数人数与选择微积分人数差的绝对值,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年“一带一路”国际合作高峰论坛于今年5月14日至15日在北京举行.为高标准完成高峰论坛会议期间的志愿服务工作,将从27所北京高校招募大学生志愿者,某调查机构从是否有意愿做志愿者在某高校访问了80人,经过统计,得到如下丢失数据的列联表:(,表示丢失的数据)

无意愿

有意愿

总计

40

5

总计

25

80

(1)求出的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;

(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.

附参考公式及数据: ,其中.

0.40

0.25

0.10

0.010

0.005

0.001

0.708

1.323

2.706

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为矩形,D的中点,AC平面BCC1B1

(Ⅰ)证明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的长;

(2)求B1D与平面ABB1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界睡眠日定在每年的321,某网站于2017314日到320日持续一周网上调查公众日平均睡眠的时间(单位:小时),共有2 000人参加调查,现将数据整理分组后如下表所示.

序号(i)

分组睡眠时间

组中值(mi)

频数(人数)

频率(fi)

1

[4,5)

4.5

80

2

[5,6)

5.5

520

0.26

3

[6,7)

6.5

600

0.30

4

[7,8)

7.5

5

[8,9)

8.5

200

0.10

6

[9,10]

9.5

40

0.02

(1)求出表中空白处的数据,并将表格补充完整.

(2)画出频率分布直方图.

(3)为了对数据进行分析,采用了计算机辅助计算.程序框图如图所示,求输出的S,并说明S的统计意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设曲线经过伸缩变换得到曲线,若点,直线交与 ,求 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如表:

停靠时间

2.5

3

3.5

4

4.5

5

5.5

6

轮船数量

12

12

17

20

15

13

8

3

(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为小时,求的值;

(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,右顶点为,设离心率为,且满足,其中为坐标原点.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点(0,1)的直线与椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动,其次在各公园签名的人中按分层抽样的方式抽取10名幸运之星,每人获得一个纪念品,其数据表格如下:

(Ⅰ)求此活动中各公园幸运之星的人数;

(Ⅱ)从乙和丙公园的幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;

(Ⅲ)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):

据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.

附临界值表及公式: ,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案