精英家教网 > 高中数学 > 题目详情
已知c>0且c≠1,设p:指数函数y=(2c-1)x在R上为减函数,q:不等式x+(x-2c)2>1的解集为R.若p∧q为假,p∨q为真,求c的取值范围.
【答案】分析:分别求出当p,q为真命题时的c的取值范围,然后由题意可得p和q有且只有一个正确,然后分两类由交集的运算可得答案.
解答:解:当p正确时,
∵函数y=(2c-1)x在R上为减函数,∴0<2c-1<1
∴当p为正确时,<1;
当q正确时,
∵不等式x+(x-2c)2>1的解集为R,
∴当x∈R时,x2-(4c-1)x+(4c2-1)>0恒成立.
∴△=(4c-1)2-4•(4c2-1)<0,∴-8c+5<0
∴当q为正确时,c>
由题设,p和q有且只有一个正确,则
(1)p正确q不正确,∴
(2)q正确p不正确∴∴c>1
∴综上所述,c的取值范围是(]∪(1,+∞)
点评:本题为变量取值范围的求解,涉及函数的单调性和一元二次不等式的解法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知c>0且c≠1,设p:指数函数y=(2c-1)x在R上为减函数,q:不等式x+(x-2c)2>1的解集为R.若p∧q为假,p∨q为真,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0且c≠1,设p:指数函数y=(2c-1)x在R上为增函数,q:不等式x+(x-2c)2>2的解集为R.若p∧q为假命题,p∨q为真命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0且c≠1,设命题p:函数y=cx在R上单调递减,命题q:不等式x2-
2
x+c>0
的解集为R,如果命题“p∨q”为真命题,“p∧q”为假命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0且c≠1,设p:指数函数y=(2c-1)x在R上为减函数,q:不等式x2-(4c-1)+(4c2-1)>0的解集为R.若p和q有且仅有一个正确,求c的取值范围.

查看答案和解析>>

同步练习册答案