分析 由题条件知函数在[0,2]上是减函数,在[-2,0]上是增函数,其规律是自变量的绝对值越小,其函数值越大,由此可直接将f(1-m)<f(m)转化成一般不等式,再结合其定义域可以解出m的取值范围
解答 解:∵函数是偶函数,
∴f(1-m)=f(|1-m|),f(m)=f(|m|),
∵定义在[-2,2]上的偶函数f(x)在区间[0,2]上单调递减,f(1-m)<f(m),
∴0≤|m|<|1-m|≤2,
解得:-1≤m<$\frac{1}{2}$
点评 本题考点是奇偶性与单调性的综合,考查利用抽象函数的单调性解抽象不等式,解决此类题的关键是将函数的性质进行正确的转化,将抽象不等式转化为一般不等式求解.本题在求解中有一点易疏漏,即忘记根据定义域为[-2,2]来限制参数的范围.做题一定要严谨,转化要注意验证是否等价.
科目:高中数学 来源: 题型:选择题
A. | [1,8] | B. | [1,4] | C. | (0,8] | D. | (-∞,8] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com