【题目】已知多面体,,,均垂直于平面,,,,.
(1)证明:⊥平面;
(2)求直线与平面所成的角的正弦值.
【答案】(1)见解析;(2)直线与平面所成的角的正弦值为.
【解析】
(1)根据直线与平面垂直的判定定理,要证平面,只需证与平面两条相交直线垂直。根据已知条件可求与的长度,然后跟据勾股定理可证.。同理可得.,进而可得平面。(2)要求直线与平面所成的角的正弦值,应先作角。由条件可得平面平面 。所以过点作,交直线于点,连结. 可知是与平面所成的角.根据条件可求的三边长,进而可由余弦定理求得 ,然后可求。进而求得,在中即可求得结果。
(1)由得,
所以.
故.
由, 得,
由得,
由,得,所以,故.
因此平面.
(2)如图,过点作,交直线于点,连结.
由平面得平面平面,
由得平面,
所以是与平面所成的角.
由得,
所以,故.
因此,直线与平面所成的角的正弦值是.
方法二:
(1)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.
由题意知各点坐标如下:
因此
由得.
由得.
所以平面.
(2)设直线与平面所成的角为.
由(Ⅰ)可知
设平面的法向量.
由即可取.
所以.
因此,直线与平面所成的角的正弦值是.
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱的底面是等腰直角三角形,,侧棱底面,且,是的中点.
(1)求直三棱柱的全面积;
(2)求异面直线与所成角的大小(结果用反三角函数表示);
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列和的项数均为,则将两个数列的偏差距离定义为,其中.
(1)求数列1,2,7,8和数列2,3,5,6的偏差距离;
(2)设为满足递推关系的所有数列的集合,和为中的两个元素,且项数均为,若,,和的偏差距离小于2020,求最大值;
(3)记是所有7项数列或的集合,,且中任何两个元素的偏差距离大于或等于3,证明:中的元素个数小于或等于16.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】实数a,b满足ab>0且a≠b,由a、b、、按一定顺序构成的数列( )
A. 可能是等差数列,也可能是等比数列
B. 可能是等差数列,但不可能是等比数列
C. 不可能是等差数列,但可能是等比数列
D. 不可能是等差数列,也不可能是等比数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是以d为公差的等差数列,{bn}数列是以q为公比的等比数列.
(1)若数列{bn}的前n项和为Sn,且a1=b1=d=2,S3<a1003+5b2﹣2010,求整数q的值;
(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s﹣r)是(t﹣r)的约数),求证:数列{bn}中每一项都是数列{an}中的项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,空间几何体由两部分构成,上部是一个底面半径为1,高为2的圆锥,下部是一个底面半径为1,高为2的圆柱,圆锥和圆柱的轴在同一直线上,圆锥的下底面与圆柱的上底面重合,点是圆锥的顶点,是圆柱下底面的一条直径,、是圆柱的两条母线,是弧的中点.
(1)求异面直线与所成的角的大小;
(2)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,对坐标平面上任意一点,定义,若两点,,满足,称点,在曲线同侧;,称点,在曲线两侧.
(1)直线过原点,线段上所有点都在直线同侧,其中,,求直线的倾斜角的取值范围;
(2)已知曲线,为坐标原点,求点集的面积;
(3)记到点与到轴距离和为的点的轨迹为曲线,曲线,若曲线上总存在两点,在曲线两侧,求曲线的方程与实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com