精英家教网 > 高中数学 > 题目详情
已知a∈R,函数f(x)=x2+ax-2-lnx.
(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)若a=1,且对于区间[
13
,1]
上任意两个自变量x1,x2,都有|f(x1)-f(x2)|≤c,求实数c的取值范围.
(参考数据:ln3≈1.0986)
分析:(1)先求导数:f′(x)=2x+a-
1
x
,由函数f(x)在[1,+∞)上为增函数,可得f′(x)≥0在[1,+∞)上恒成立,进而构造关于a的不等式,进而可求出实数a的取值范围;
(2)把a=1代入,结合(1)可判断出函数f(x)在区间[
1
3
,1]上的值域,进而可得实数c的取值范围.
解答:解:(1)∵函数f(x)在[1,+∞)上为增函数,
∴f′(x)=2x+a-
1
x
≥0在[1,+∞)上恒成立,
即a≥
1
x
-2x在[1,+∞)上恒成立,
令g(x)=
1
x
-2x,则函数g(x)在[1,+∞)上为减函数
∴当x=1时,函数g(x)取最大值-1
∴a≥-1,即实数a的取值范围为[-1,+∞)
(2)当a=1时,f(x)=x2+x-2-lnx.f′(x)=2x+1-
1
x
=
(2x-1)(x+1)
x

当x∈[
1
3
1
2
]时,f′(x)≤0,此时函数为减函数
当x∈[
1
2
,1]时,f′(x)≥0,此时函数为增函数
故当x=
1
2
时,f(x)取最小值ln2-
5
4

当x=1时,f(x)取最大值0
∴|f(x1)-f(x2)|≤
5
4
-ln2
∴c≥
5
4
-ln2
点评:本题考查的知识点是利用导数研究函数的单调性,导数在最大值,最小值问题中的应用,熟练掌握导数的符号与函数单调性的关系是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
1
12
x3+
a+1
2
x2+(4a+1)x

(Ⅰ)如果函数g(x)=f′(x)是偶函数,求f(x)的极大值和极小值;
(Ⅱ)如果函数f(x)是(-∞,?+∞)上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=ln(x+1)-x2+ax+2.
(1)若函数f(x)在[1,+∞)上为减函数,求实数a的取值范围;
(2)令a=-1,b∈R,已知函数g(x)=b+2bx-x2.若对任意x1∈(-1,+∞),总存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e为自然对数的底).
(1)当a>0时,求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在求出x0的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知a∈R,函数 f(x)=x3+ax2+(a-3)x的导函数是偶函数,则曲线y=f(x)在原点处的切线方程为
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.

查看答案和解析>>

同步练习册答案