精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=x2+(a+1)x+(a+2)
(1)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式.
(2)命题p:函数f(x)在区间[(a+1)2,+∞)上是增函数;命题q:函数g(x)是减函数.如果命题¬p,p∨q都是假命题,求a的取值范围.

分析 (1)由$\left\{\begin{array}{l}f(x)=g(x)+h(x)\\ f(-x)=-g(x)+h(x)\end{array}\right.$得g(x)和h(x)的解析式.
(2)要使命题?p,p∨q都是假命题,即p真q假,分别求出相应命题为真时,a的范围,即可得出结论.

解答 解:(1)由$\left\{\begin{array}{l}f(x)=g(x)+h(x)\\ f(-x)=-g(x)+h(x)\end{array}\right.$得,
$g(x)=\frac{f(x)-f(-x)}{2}=(a+1)x$,$h(x)=\frac{f(x)+f(-x)}{2}={x^2}+a+2$.
(2)由p真得,$-\frac{a+1}{2}≤{(a+1)^2}$,即$a≤-\frac{3}{2}$或a≥-1.
由q真得,a<-1.
要使命题?p,p∨q都是假命题,即p真q假.
所以a∈[-1,+∞).

点评 本题考查函数解析式的求解,考查复合命题真假的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.请按要求完成下列两题.
(Ⅰ)求由直线$x=-\frac{π}{3}$,$x=\frac{π}{3}$,y=0与曲线y=cosx所围成的封闭图形的面积.
(Ⅱ)求由直线y=x-4,曲线$y=\sqrt{2x}$及x轴所围成的封闭图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知平面直角坐标系内,B、C两点是x轴上的两动点,且|BC|=$\sqrt{2}$,A点是直线y=$\sqrt{2}$上的动点,则|AB|:|AC|的最大值与最小值的和为(  )
A.$\sqrt{5}$B.$\sqrt{6}$C.$\sqrt{7}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\frac{9}{8cos2x+16}$-sin2x,则当f(x)取最小值时cos2x的值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数f(x)为周期函数,且周期为4,若在区间[-2,2]上,f(x)=$\left\{\begin{array}{l}{{2}^{x}+2m,-2≤x≤0}\\{lo{g}_{2}x-m,0<x≤2}\end{array}\right.$,则f(2017m)=(  )
A.-$\frac{9}{4}$B.-$\frac{5}{2}$C.$\frac{9}{4}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在矩形ABCD中,AB=2,AD=1,E为CD的中点,将△ADE沿AE折起,使平面ADE⊥平面ABCE,得到几何体D-ABCE,M点是此时BD的中点.

(1)求异面直BE和CM所成角的大小;
(2)求BD与平面ADE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以下函数中在区间(0,+∞)上单调递增的函数是(  )
A.y=|x|+1B.y=$\frac{1}{x}$C.y=-x2+1D.y=-x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,求m的范围m≤-16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题正确的个数是(  )
①$\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow 0$
②$\overrightarrow 0•\overrightarrow{AB}=\overrightarrow 0$
③$\overrightarrow a与\overrightarrow b$共线,则$\overrightarrow a•\overrightarrow b=|{\overrightarrow a}||{\overrightarrow b}|$
④$(\overrightarrow a•\overrightarrow b)•\overrightarrow c=\overrightarrow a•(\overrightarrow b\overrightarrow{•c})$.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案