精英家教网 > 高中数学 > 题目详情
设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴于P,Q两点,且AP:PQ=8:5.
(1)求椭圆的离心率;
(2)已知直线l过点M(-3,0),倾斜角为
π
6
,圆C过A,Q,F三点,若直线l恰好与圆C相切,求椭圆方程.
分析:(1)设出P,Q,F坐标,利用c=
a2-b2
以及AP:PQ=8:5,求出P的坐标代入椭圆方程,即可求椭圆的离心率;
(2)利用直线l过点M(-3,0),倾斜角为
π
6
,求出直线的方程,通过圆C过A,Q,F三点,直线l恰好与圆C相切,圆心到直线的距离等于半径,求出a,b,c的值,即可求得椭圆方程.
解答:解:(1)设点Q(x0,0),F(-c,0),P(x,y),其中c=
a2-b2
,A(0,b).
由AP:PQ=8:5,得
AP
=
8
13
AQ

(x,y-b)=
8
13
(x0,-b)
,得P(
8
13
x0
5
13
b)
,…(2分)
点P在椭圆上,∴(
8
13
)2
x02
a2
+(
5
13
)2=1⇒x0=
3
2
a
.①…(4分)
FA
=(c,b),
AQ
=(x0,-b),
FA
AQ

FA
AQ
=0

cx0-b2=0,x0=
b2
c
.②…(6分)
由①②知2b2=3ac,
∴2c2+3ac-2a2=0.
∴2e2+3e-2=0,
e=
1
2
. …(8分)
(2)由题意,得直线l的方程y=
3
3
(x+3)
,即x-
3
y+3=0

满足条件的圆心为O′(
b2-c2
2c
,0)

又a=2c,∴
b2-c2
2c
=
a2-c2-c2
2c
=c
,∴O′(c,0).  …(10分)
圆半径r=
b2
c
+2
2
=
a2
2c
=a
.              …(12分)
由圆与直线l:x-
3
y+3=0
相切得,
|c+3|
2
=a
,…(14分)
又a=2c,∴c=1,a=2,b=
3

∴椭圆方程为
x2
4
+
y2
3
=1
. …(16分)
点评:本题是中档题,考查题意的离心率的求法,直线与圆的位置关系的应用,椭圆方程的求法,考查计算能力,转化思想,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,A是椭圆上的一点,C,原点O到直线AF1的距离为
1
3
|OF1|

(Ⅰ)证明a=
2
b

(Ⅱ)求t∈(0,b)使得下述命题成立:设圆x2+y2=t2上任意点M(x0,y0)处的切线交椭圆于Q1,Q2两点,则OQ1⊥OQ2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的动点Q,过动点Q作椭圆的切线l,过右焦点作l的垂线,垂足为P,则点P的轨迹方程为(  )
A、x2+y2=a2
B、x2+y2=b2
C、x2+y2=c2
D、x2+y2=e2

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是椭圆
x2a2
+y2=1   (a>1)
短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•即墨市模拟)设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

-1<a<-
1
2
,则椭圆
x2
a2
+
y2
(a+1)2
=1
的离心率的取值范围是(  )

查看答案和解析>>

同步练习册答案