精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)当时,证明:

2)若上有且只有一个零点,求的取值范围.

【答案】1)见解析; 2.

【解析】

(1) 的值代入,再求出函数的最小值,即可证明;

(2)进行分类讨论,当可得函数有无数个零点,求导数,确定为负故符合题意,当时,求导函数,对导数再求一次导,再对进行分类讨论,同时利用奇偶性可得当上有且只有一个零点,当时,利用零点定理取一个特值,判断出不合题意,得出的取值范围.

1)当时,

所以的定义域为R,为偶函数.

,

,所以

因为,所以上单调递增,

上单调递增,

所以上单调递增,所以

因为为偶函数,所以当,.

2)①当时,,令,解得

所以函数有无数个零点,不符合题意;

②当时,,当且仅当时等号成立,故符合题意;

③因为,所以是偶函数,

又因为,故的零点.

时,,记,则.

1)当时,

单调递增,故当时,

单调递增,故

所以没有零点.

因为是偶函数,所以上有且只有一个零点.

2)当时,当时,存在,使得,且当时,单调递减,故

时,,故单调递减,

,所以

由零点存在性定理知上有零点,又因为的零点,

不符合题意;

综上所述,a的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,的中点,点在平面内的射影在线段上.

(1)求证:

(2)若是正三角形,求三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形,为线段上的动点.

1)若为线段的中点,求证:平面

2)若三棱锥的体积记为,四棱锥的体积记为,当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:,经过点,倾斜角为的直线l与曲线C交于AB两点

I)求曲线C的直角坐标方程和直线l的参数方程;

)求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)设,(其中的导数),求的最小值;

2)设,若有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图()是某品牌汽车年月销量统计图,图()是该品牌汽车月销量占所属汽车公司当月总销量的份额统计图,则下列说法错误的是(

A.该品牌汽车年全年销量中,月份月销量最多

B.该品牌汽车年上半年的销售淡季是月份,下半年的销售淡季是月份

C.年该品牌汽车所属公司月份的汽车销量比月份多

D.该品牌汽车年下半年月销量相对于上半年,波动性小,变化较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了鼓励职员工作热情,某公司对每位职员一年来的工作业绩按月进行考评打分;年终按照职员的月平均值评选公司最佳职员并给予相应奖励.已知职员一年来的工作业绩分数的茎叶图如图所示:

1)根据职员的业绩茎叶图求出他这一年的工作业绩的中位数和平均数;

2)若记职员的工作业绩的月平均数为.

①已知该公司还有6位职员的业绩在100以上,分别是,在这6人的业绩里随机抽取2个数据,求恰有1个数据满足(其中)的概率;

②由于职员的业绩高,被公司评为年度最佳职员,在公司年会上通过抽奖形式领取奖金.公司准备了9张卡片,其中有1张卡片上标注奖金为6千元,4张卡片的奖金为4千元,另外4张的奖金为2千元.规则是:获奖职员需要从9张卡片中随机抽出3张,这3张卡片上的金额数之和就是该职员所得奖金.记职员获得的奖金为(千元),求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为,曲线的参数方程为:为参数),为直线上距离为的两动点,点为曲线上的动点且不在直线上.

1)求曲线的普通方程及直线的直角坐标方程.

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为锐角的外心,且三边与面积满足,若(其中是实数),则的最大值是(

A.B.C.D.

查看答案和解析>>

同步练习册答案