精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C 的右焦点为F(2,0),过点F的直线交椭圆于MN两点且MN的中点坐标为

(Ⅰ)求椭圆C的方程;

(Ⅱ)设直线l不经过点P(0,b)且与C相交于AB两点,若直线PA与直线PB的斜率的和为1,试判断直线 l是否经过定点,若经过定点,请求出该定点;若不经过定点,请给出理由.

【答案】(Ⅰ); (Ⅱ) .

【解析】

(Ⅰ)设,由点差法可得MN的中点坐标为,则可得,由此能求出椭圆C的方程.

(II)设直线AB,联立方程得:由此利用韦达定理、直线斜率公式,结合已知条件能求出直线l经过定点

(I)设,则,两式相减得

,

MN的中点坐标为 ,且MNFQ共线

因为,所以

因为所以

所以椭圆C的方程为.

(II)设直线AB,联立方程得:

因为,所以,所以

所以,所以,所以

所以,因为,所以

所以直线AB,直线AB过定点

又当直线AB斜率不存在时,设AB,则,因为

所以适合上式,所以直线AB过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,长方体中,,的中点.

(1)求证:平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司将进的一批单价为7元的商品,若按单价为10元销售,每天可以卖出100个,若每个商品的销售价上涨1元,则每天的销售量就减少10.

1)设每个商品的销售价上涨元,每天的利润为元,试写出函数关系式.

2)当每个商品的销售价定为多少时,每天的利润达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.

1)求圆O的方程;

2)圆Ox轴交于EF两点,圆O内的动点D使得DEDODF成等比数列,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为.某机构就《流浪地球》是否好看的问题随机采访了4名观众.

1)若这4名观众22女,求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;

2)若这4名观众都是男性,设X表示这4名观众中认为《流浪地球》好看的人数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于 的函数

(I)试求函数的单调区间;

(II)若在区间 内有极值,试求a的取值范围;

(III) 时,若有唯一的零点 ,试求 .(注:为取整函数,表示不超过的最大整数,如 ;以下数据供参考:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:

按此规律,第个等式可为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点,点在椭圆上.

(Ⅰ)求椭圆的方程;

(Ⅱ)直线平行于直线坐标原点),且与椭圆交于两个不同的点,若为钝角,求直线轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的帮圆C经过点M(2,1),N.

(1)求椭圆C的标准方程;

(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的AB两点,当△AMB面积取得最大值时,求直线AB的方程.

查看答案和解析>>

同步练习册答案