精英家教网 > 高中数学 > 题目详情

【题目】已知圆圆心坐标为点为坐标原点,轴、轴被圆截得的弦分别为.

(1)证明:的面积为定值;

(2)设直线与圆交于两点,若,求圆的方程.

【答案】(1)证明见解析;(2).

【解析】

1)利用几何条件可知,为直角三角形,且圆过原点,所以得知三角形两直角边边长,求得面积;

2)由及原点O在圆上,知OCMN,所以 ,求出 的值,再利用直线与圆的位置关系判断检验,符合题意的解,最后写出圆的方程。

(1)因为轴、轴被圆截得的弦分别为

所以经过,又中点,所以,所以

,所以的面积为定值.

(2)因为直线与圆交于两点,

所以的中垂线经过,且过,所以的方程

所以,所以当时,有圆心,半径

所以圆心到直线的距离为

所以直线与圆交于点两点,故成立;

时,有圆心,半径,所以圆心到直线的距离为,所以直线与圆不相交,故(舍去),

综上所述,圆的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正三棱锥P﹣ABC中E,F分别是AC,PC的中点,若EF⊥BF,AB=2,则三棱锥P﹣ABC的外接球的表面积(
A.4π
B.6π
C.8π
D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形所在平面,为线段的中点, 为线段上一点,且

(1)求证: 平面

(2)若,求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(1)求回归直线方程,其中.

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)若,求函数的极值;

(2)若函数上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学40名数学教师,按年龄从小到大编号为1,2,…40。现从中任意选取6人分成两组分配到A,B两所学校从事支教工作,其中三名编号较小的教师在一组,三名编号较大的教师在另一组,那么编号为8,12,28的数学教师同时入选并被分配到同一所学校的方法种数是

A. 220 B. 440 C. 255 D. 510

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数,标准差,绘制如图所示的频率分布直方图,以频率值作为概率估值。

(1)从该生产线加工的产品中任意抽取一件,记其数据为,依据以下不等式评判(表示对应事件的概率)

评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;

(2)将数据不在内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为,求的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程是ρ=asinθ,直线l的参数方程是 (t为参数)
(1)若a=2,直线l与x轴的交点是M,N是圆C上一动点,求|MN|的最大值;
(2)直线l被圆C截得的弦长等于圆C的半径的 倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列满足,

求数列的通项公式;

,求的前n项和为

查看答案和解析>>

同步练习册答案