精英家教网 > 高中数学 > 题目详情
3.直线l:y=kx+1与双曲线C:2x2-y2=1.
(1)若直线与双曲线有且仅有一个公共点,求实数k的取值范围;
(2)若直线分别与双曲线的两支各有一个公共点,求实数k的取值范围.

分析 将直线方程代入双曲线方程,化为关于x的方程,利用方程的判别式,即可求得k的取值范围.

解答 解:由题意,直线l:y=kx+1与双曲线C:2x2-y2=1,可得2x2-(kx+1)2=1,整理得(2-k2)x2-2kx-2=0.
(1)只有一个公共点,当2-k2=0,k=±$\sqrt{2}$时,符合条件;当2-k2≠0时,由△=16-4k2=0,解得k=±2;
(2)交于异支两点,$\frac{-2}{2-{k}^{2}}$<0,解得-$\sqrt{2}$<k<$\sqrt{2}$.

点评 本题考查直线与圆锥曲线的关系,解题的关键是将问题转化为方程根的问题,运用判别式解决,注意只有一个公共点时,不要忽视了与渐近线平行的情况,属于易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列说法正确的是(  )
A.若“p或q”为真,则“p且q”也为真
B.命题“若x=2,则x2-5x+6=0”的否命题是“若x=2,则x2-5x+6≠0”
C.已知a,b∈R,命题“若a>b,则|a|>|b|”的逆否命题是真命题
D.已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列四个命题中:
①“等边三角形的三个内角均为60°?”的逆命题;
②“若k>0,则方程x2+2x-k=0有实根”的逆否命题;
③“全等三角形的面积相等”的否命题;
④“若ab≠0,则a≠0”的否命题.
其中真命题的个数是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式$\frac{3x-1}{2-x}≤1$的解集是(  )
A.{x|$\frac{3}{4}$≤x≤2}B.{x|$\frac{3}{4}$≤x<2}C.{x|x<2}D.{x|x>2或x≤$\frac{3}{4}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FP}=5\overrightarrow{FQ}$,则|QF|=(  )
A.$\frac{7}{2}$B.$\frac{8}{5}$C.$\frac{5}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在复平面内,复数2-i(i是虚数单位)的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出一个算法:

根据以上算法,可求得f(-1)+f(3)的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.方程lnx+2x-6=0的近似解所在的区间是(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图的程序框图,则输出S的值为(  )
A.$\frac{tan2017°-tan1949°}{tan1°}$-67B.$\frac{tan2016°-tan1949°}{tan1°}$-67
C.$\frac{tan2017°-tan1949°}{tan1°}$-68D.$\frac{tan2016°-tan1949°}{tan1°}$-68

查看答案和解析>>

同步练习册答案