精英家教网 > 高中数学 > 题目详情
18.已知数列{an}满足a1=$\frac{1}{4}$,an+1=1-$\frac{1}{a_n}$,则a2015的值为(  )
A.$\frac{1}{4}$B.-3C.$\frac{2}{3}$D.-2

分析 a1=$\frac{1}{4}$,an+1=1-$\frac{1}{a_n}$,可得a2=-3,a3=$\frac{4}{3}$,a4=$\frac{1}{4}$,…,可得an+3=an.利用周期性即可得出.

解答 解:∵a1=$\frac{1}{4}$,an+1=1-$\frac{1}{a_n}$,
∴a2=1-4=-3,a3=$1-\frac{1}{-3}$=$\frac{4}{3}$,a4=1-$\frac{1}{\frac{4}{3}}$=$\frac{1}{4}$,
…,
可得an+3=an
∴a2015=a671×3+2=a2=-3.
故选:B.

点评 本题考查了数列的递推关系、周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设${({5\sqrt{x}-\root{3}{x}})^n}$展开式的各项系数的和为M,二项式系数的和为N,M-N=992,则展开式中x2项的系数为(  )
A.250B.-250C.150D.-150

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.上海迪士尼乐园有一块长方形地ABCD,若要在此地块上拟建一个Rt△MNP的主题乐园,已知AB=2km,AD=$\sqrt{3}$km,点M是AB的中点,点P在线段AD上,点N在线段BC上,记∠NMB=α.
(1)当α为何值时,Rt△MNP的面积S最大?并求出其最大值;
(2)当α为何值时,Rt△MNP的周长l最大?并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某休闲农庄有一块长方形鱼塘ABCD,AB=100米,BC=50$\sqrt{3}$米,为了便于游客休闲散步,该农庄决定在鱼塘内建3条如图所示的观光走廊OE、EF和OF,考虑到整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上(不含顶点),且∠EOF=90°.($\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7)
(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条走廊每米建设费用均为4000元,试问如何设计才能使建设总费用最低并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.王老师注册了一个QQ号,密码由五个数字构成,为了提高保密程度,他决定再插入一个英文字母a和一个感叹号!,原来的数字及顺序不变,则可构成新密码的个数为42(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和Sn满足${S_n}=\frac{3}{2}{a_n}-\frac{1}{2}$,数列{bn}满足bn=2log3an+1,其中n∈N*.(I)求数列{an}和{bn}的通项公式;(II)设${c_n}=\frac{b_n}{a_n}$,数列{cn}的前n项和为Tn,若${T_n}<{c^2}-2c$对n∈N*恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,已知F1,F2是椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,若点Q为线段PF2的中点,则b的值为(  )
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=x2+3x+1,则f(x)=(  )
A.x2B.2x2C.2x2+2D.x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆C:x2+y2-4x+3=0,点P(a,a+1)(a∈R),过点P的直线与圆C有且只有一个公共点M,则PM的最小值为$\frac{\sqrt{14}}{2}$.

查看答案和解析>>

同步练习册答案