【题目】为了解某商场旅游鞋的日销售情况,现抽取部分顾客购鞋的尺码,将所得数据绘成如图所示频率分布直方图,已知图中从左到右前三组的频率之比为1:2:3,第二组的频数为10.
(1)用频率估计概率,求尺码落在区间(37.5,43.5]概率约是多少?
(2)从尺码落在区间(37.5,39.5](43.5,45.5]顾客中任意选取两人,记在区间(43.5,45.5]的人数为X,求X的分布列及数学期望EX.
【答案】
(1)解:由频率分布直方图第四组第五组的频率分别为0.175,0.075.再由频率之比和互斥事件的和事件的概率等于概率之和:P=0.25+0.375+0.175=0.8
(2)解:设抽取的顾客人数为n,则由已知可得n=40.尺码落在区间(43.5,45.5]的人数为3人,所以可知X可能取到的值为0,1,2.又尺码落在区间(37.5,39.5]的人数为10人,所以:P(X=0)= ,P(X=1)= ,P(X=2)=
所以X的数学期望EX=
【解析】(1)通过频率分布直方图第四组第五组的频率.再由频率之比和互斥事件的和事件的概率等于概率之和求解即可.(2)设抽取的顾客人数为n,求出n.尺码落在区间(43.5,45.5]的人数为3人,得到X可能取到的值,然后求出概率,得到期望.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
科目:高中数学 来源: 题型:
【题目】如图,抛物线: 与椭圆: 在第一象限的交点为, 为坐标原点, 为椭圆的右顶点, 的面积为.
(Ⅰ)求抛物线的方程;
(Ⅱ)过点作直线交于、 两点,射线、分别交于、两点,记和的面积分别为和,问是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】棱台的三视图与直观图如图所示.
(1)求证:平面平面;
(2)在线段上是否存在一点,使与平面所成的角的正弦值为?若存在,指出点的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:(x+1)2+y2=20,点B(l,0).点A是圆C上的动点,线段AB的垂直平分线与线段AC交于点P.
(1)求动点P的轨迹C1的方程;
(2)设 ,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线Cl于P,Q两点,求△MPQ面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com