精英家教网 > 高中数学 > 题目详情

已知函数(e为自然对数的底数)
(1)求的最小值;
(2)若对于任意的,不等式恒成立,求实数的取值范围.

(1)的最小值为1;(2)实数的取值范围是.

解析试题分析:(1)先对求导,得出函数的单调区间,即可求出函数的最小值为1;
(2)不等式恒成立,变形为,构造新函数;求得的最小值
从而实数的取值范围是
试题解析:(1)的导函数,令,解得
,解得.
从而内单调递减,在内单调递增.
所以,当时,取得最小值1.                       6分
(2)因为不等式的解集为,且
所以对于任意,不等式恒成立.
,得.
时,上述不等式显然成立,故只需考虑的情况.
变形为.
,则的导函数
,解得;令,解得.
从而内单调递减,在内单调递增.
所以,当时,取得最小值
从而实数的取值范围是.                       13分
考点:导函数的综合应用、函数与方程思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若,求函数的极值点;
(2)若在区间内单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处切线为.
(1)求的解析式;
(2)设表示直线的斜率,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;
(2)当a=1时,求函数在区间[t,t+3]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处取得极值,且在点处的切线斜率为.
⑴求的单调增区间;
⑵若关于的方程在区间上恰有两个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若曲线轴相切于异于原点的一点,且函数的极小值为,求的值;
(2)若,且
①求证:; ②求证:上存在极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的最小值;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-(2a+1)x+2lnx(a∈R).
(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2)当a≤0时,求f(x)的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(a为实数).
(1) 当a=5时,求函数处的切线方程;
(2) 求在区间)上的最小值;
(3) 若存在两不等实根,使方程成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案