精英家教网 > 高中数学 > 题目详情

已知f(x)是定义在R上的周期函数,其最小正周期为2,且当x∈[-1,1)时,f(x)=|x|则函数y=f(x)的图象与函数y=log4x的图象的交点个数为


  1. A.
    3
  2. B.
    4
  3. C.
    6
  4. D.
    8
A
分析:先根据函数的周期性画出函数y=f(x)的图象,以及y=|log4x|的图象,结合图象当x>4时,y=|log4x|>1此时与函数y=f(x)无交点,即可判定交点的个数.
解答:解:根据周期性画出函数y=f(x)与y=|log4x|的图象,
根据y=|log4x|在(1,+∞)上单调递增函数,当x=4时|log44|=1,
∴当x>4时y=|log4x|>1此时与函数y=f(x)无交点,
结合图象可知有3个交点,
故选A.
点评:本题主要考查了周期函数与对数函数的图象,数形结合是高考中常用的方法,考查数形结合,本题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案