精英家教网 > 高中数学 > 题目详情
2.如图,底角∠ABE=45°的直角梯形ABCD,底边BC长为4cm,腰长AB为$2\sqrt{2}$cm,当一条垂直于底边BC的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BE=x,试写出阴影部分的面积y与x的函数关系式,并画出函数大致图象.

分析 当直线l过点A时,BE=AB•cos45°=2,∴当x=0时,阴影部分为一点;当0<x≤2时,阴影部分为等腰直角三角形;当2<x≤4时,阴影部分为直角边为2的等腰直角三角形加矩形,矩形相临两边长分别为x-2和2.

解答 解:当直线l过点A时,BE=AB•cos45°=2,
∴当x=0时,y=0;
当0<x≤2时,y=$\frac{1}{2}$x2
当2<x≤4时,y=$\frac{1}{2}$•22+2(x-2)=2x-2.
∴y=$\left\{\begin{array}{l}{\frac{1}{2}{x}^{2},0≤x≤2}\\{2x-2,2<x≤4}\end{array}\right.$.
函数图象为:

点评 本题考查了分段函数的解析式与图象,根据题意找到x的分界点及范围是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知f(x)=ax2+2x在[2,4]上单调,则a的取值范围是a≤-$\frac{1}{2}$或a≥-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)设函数f(x)=2x+3,g(x+2)=f(x),求g(x)的表达式.
(2)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=-$\sqrt{x}$(1+x),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的偶函数f(x)在[0,+∞)内单调递减,则下列判断正确的是(  )
A.f(2a)<f(-a)B.f(π)>f(-3)C.$f(-\frac{{\sqrt{3}}}{2})<f(\frac{4}{5})$D.f(a2+1)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将列联表补充完整(不用写计算过程);
 喜爱不喜爱合计
男生 5 
女生10  
合计  50
并求出:有多大把握认为喜爱打篮球与性别有关,说明你的理由;
(2)若从该班不喜爱打篮球的男生中随机抽取3人调查,求其中某男生甲被选到的概率.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.方程logax=x-2(0<a<1)的实数解的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,a1=2,Sn=$\frac{n+2}{3}{a}_{n}$(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列满足${b_n}={({-1})^n}•\frac{2n+1}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+$\frac{a-x}{x}$,其中a为常数,且a>0.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=$\frac{1}{2}$x+1垂直,求a的值;
(2)求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x+$\sqrt{1+2x}$.
(1)求函数的定义域;
(2)判断函数的单调性并证明.

查看答案和解析>>

同步练习册答案