精英家教网 > 高中数学 > 题目详情
8.设数列{an}的前n项和为Sn,且对n∈N*都有Sn=2an+n-4
(1)求证:数列{an-1}是等比数列,并求数列{an}的通项公式;
(2)数列{bn} 满足bn=$\frac{1}{(n+1)lo{g}_{2}({a}_{n}-1)}$,(n∈N*)求数列{bn}的前n项和为Tn

分析 (1)利用递推公式化为:an=2an-1-1,变形为an-1=2(an-1-1),即可证明.
(2)由(1)可知:an-1=2n,即an=2n+1.可得bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂项求和”即可得出.

解答 (1)证明:∵对n∈N*都有Sn=2an+n-4,∴当n=1时,a1=2a1-3,解得a1=3.
当n≥2时,an=Sn-Sn-1=2an+n-4-[2an-1+(n-1)-4]=2an-2an-1+1,
化为an=2an-1-1,变形为an-1=2(an-1-1),
∴数列{an-1}是等比数列,首项为2,公比为2,
(2)解:由(1)可知:an-1=2n,即an=2n+1.
∴bn=$\frac{1}{(n+1)lo{g}_{2}({a}_{n}-1)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,(n∈N*
∴数列{bn}的前n项和为Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$..

点评 本题考查了“裂项求和”、等比数列的通项公式、递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知点A(2,0)是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右顶点,且椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$.过点M(-3,0)作直线l交椭圆C于P、Q两点.
(1)求椭圆C的方程,并求出直线l的斜率的取值范围;
(2)椭圆C的长轴上是否存在定点N(n,0),使得∠PNM=∠QNA恒成立?若存在,求出n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=x+2与圆x2+y2=2的位置关系为(  )
A.相切B.相交但直线不过圆心
C.直线过圆心D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数f(x)的最小值为1,f(0)=f(2)=3,g(x)=f(x)+ax(a∈R).
①求f(x)的解析式;
②若函数g(x)在[-1,1]上不是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等比数列{an}中,a1=3,a6=6,则a16等于(  )
A.6B.12C.24D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(x,y),x∈[1,6],y∈[1,6]则满足$\overrightarrow{a}$•$\overrightarrow{b}$<0的概率是(  )
A.$\frac{21}{25}$B.$\frac{23}{25}$C.$\frac{1}{5}$D.$\frac{3}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x+6}$的单调递增区间是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=cosx最小正周期是(  )
A.1B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若3cosα+4sinα=5,则tanα=$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案