【题目】已知函数,是偶函数.
(1)求的值;
(2)若函数的图象在直线上方,求的取值范围;
(3)若函数,,是否存在实数使得的最小值为0?若存在,求出的值,若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为(0,+),若在(0,+)上为增函数,则称为“一阶比增函数”;若在(0,+)上为增函数,则称为”二阶比增函数”。我们把所有“一阶比增函数”组成的集合记为1,所有“二阶比增函数”组成的集合记为2。
(1)已知函数,若∈1,求实数的取值范围,并证明你的结论;
(2)已知0<a<b<c,∈1且的部分函数值由下表给出:
t | 4 |
求证:;
(3)定义集合,且存在常数k,使得任取x∈(0,+),<k},请问:是否存在常数M,使得任意的∈,任意的x∈(0,+),有<M成立?若存在,求出M的最小值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求满足下列条件的直线方程.
(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;
(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列推理过程不是演绎推理的是( ).
①一切奇数都不能被2整除,2019是奇数, 2019不能被2整除;
②由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方;
③在数列中,,,由此归纳出的通项公式;
④由“三角形内角和为”得到结论:直角三角形内角和为 .
A. ① ② B. ② ③ C. ③ ④ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了防止受到核污染的产品影响民众的身体健康,某地要求这种产品在进入市场前必须进行两轮苛刻的核辐射检测,只有两轮检测都合格才能上市销售,否则不能销售。已知该产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,每轮检测结果只有“合格”、“不合格”两种,且两轮检测是否合格相互之间没有影响。
(1)求该产品不能上市销售的概率;
(2)如果这种产品可以上市销售,则每件产品可获利50元;如果这种产品不能上市销售,则每件产品亏损80元(即获利为80元)。现有这种产品4件,记这4件产品获利的金额为元,求的分布列。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com