精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,AB=1
(1)求证:平面A B1D1∥平面EFG; 
(2)求三棱锥C-EFG的体积.
分析:(1)先证线面平行,再由线面平行证明面面平行即可;
(2)先根据正方体的性质判断棱锥的高与底面面积,再利用棱锥的体积公式计算即可.
解答:解:(1)证明:连接BC1,C1D,∵E、F、G分别是CB、CD、CC1的中点,
∴EG∥BC1,又BC1∥AD1,∴EG∥AD1
EG?平面AB1D1,AD1?平面AB1D1,∴EG∥平面AB1D1
同理FG∥平面AB1D1,又FG∩EG=G,
∴平面A B1D1∥平面EFG.
(2)∵E、F、G分别是CB、CD、CC1的中点,AB=1
∴CE=CF=CG=
1
2
,又∵正方体ABCD-A1B1C1D1
∴VC-EFG=
1
3
×S△CEF×CG=
1
3
×
1
2
×
1
2
×
1
2
×
1
2
=
1
48
点评:本题考查面面平行的判定及三棱锥的体积计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案