精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,的中点,点在平面内的射影在线段.

(1)求证:平面

(2)是正三角形,求二面角的余弦值.

【答案】(1)证明见解析(2)

【解析】

1)设点在平面内的射影,先根据射影得,再根据计算得,最后根据线面垂直判定定理得结果,(2)根据条件建立空间直角坐标系,设立坐标解得面与面的法向量,再根据向量数量积得法向量夹角,最后根据向量夹角与二面角关系得结果.

(1)证明:设点在平面内的射影,则平面

平面,因平面,所以.

中,,则

中,,则

,故

,故平面.

(2)为坐标原点,所在的直线分别为轴正半轴,垂直平面的直线为z轴建系

的法向量.,设面的法向量,则

因为二面角为锐角,故二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直三棱柱中, .

1)若,求直线与平面所成角的正弦值;

2)若二面角的大小为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点,则下面说法不正确的是(

A.B.

C.D.有极小值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电动汽车“行车数据”的两次记录如下表:

记录时间

累计里程

(单位:公里)

平均耗电量(单位:公里)

剩余续航里程

(单位:公里)

2019年1月1日

4000

0.125

280

2019年1月2日

4100

0.126

146

(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,平均耗电量=,剩余续航里程=,下面对该车在两次记录时间段内行驶100公里的耗电量估计正确的是

A. 等于12.5B. 12.5到12.6之间

C. 等于12.6D. 大于12.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在实数集上的实值函数,如果存在,使得对任何,都有,那么称高兴,如果对任何,都存在,使得,那么称幸运,对于实数和上述函数,定义.

1)①,判断是否比高兴?

,判断是否比幸运?

2)判断下列命题是否正确?并说明理由:

①如果高兴,高兴,那么高兴;

②如果幸运,幸运,那么幸运;

3)证明:对每个函数,均存在函数,使得对任何实数都比幸运,也比幸运.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形中,,四边形为矩形,且平面.

(1)求证:平面

(2)点在线段上运动,当点在什么位置时,平面与平面所成锐二面角最大,并求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a0a≠1).

1)判断并证明函数fx)的奇偶性;

2)若ft2t1+ft2)<0,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中医药,是包括汉族和少数民族医药在内的我国各民族医药的统称,是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华民族的瑰宝.某科研机构研究发现,某品种中医药的药物成分甲的含量(单位:克)与药物功效(单位:药物单位)之间具有关系.检测这种药品一个批次的5个样本,得到成分甲的平均值为4克,标准差为克,则估计这批中医药的药物功效的平均值为(

A.22药物单位B.20药物单位C.12药物单位D.10药物单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在常数,使得数列满足对一切恒成立,则称为可控数列,.

1)若,问有多少种可能?

2)若是递增数列,,且对任意的,数列成等差数列,判断是否为可控数列?说明理由;

3)设单调的可控数列的首项,前项和为,即.的极限是否存在,若存在,求出的关系式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案