精英家教网 > 高中数学 > 题目详情

【题目】某学校为了了解该校高三年级学生寒假在家自主学习的情况,随机对该校300名高三学生寒假的每天学习时间(单位:h)进行统计,按照的分组作出频率分布直方图如图所示.

(Ⅰ)根据频率分布直方图计算该校高三年级学生的平均每天学习时间(同一组中的数据用该组区间中点值代表);

(Ⅱ)该校规定学习时间超过4h为合格,否则不合格.已知这300名学生中男生有140人,其中合格的有70人,请补全下表,根据表中数据,能否有99.9%的把握认为该校高三年级学生的性别与学习时长合格有关?

男生

女生

总计

不合格

合格

70

总计

140

160

300

参考公式:,其中

参考附表:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(Ⅰ)4.36;(Ⅱ)有99.9%的把握认为该校高三年级学生的性别与学习时长合格有关.

【解析】

(Ⅰ)根据频率分布直方图直接计算平均值即可;

(Ⅱ)先求出300名学生中合格的人数,再补全表格,然后根据表格数据和公式计算,最后将进行比较,进而得出结论.

(Ⅰ)高三年级学生平均每天的学习时间为:

(h);

(Ⅱ)300名学生中合格的人数为(),

故补全表格如下:

男生

女生

总计

不合格

70

50

120

合格

70

110

180

总计

140

160

300

所以,

所以有99.9%的把握认为该校高三年级学生的性别与学习时长合格有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】保险公司对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金,保险公司把企业的所有岗位共分为三类工种,从事这三类工种的人数分别为1200060002000,由历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率):

已知三类工种职工每人每年需交的保费分别为252540元,出险后的赔偿金额分别为100万元100万元50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.

1)设A类工种职工的每份保单保险公司的收益为随机变量X(元),求X的数学期望;

2)若该公司全员参加保险,求保险公司该业务所获利润的期望值;

3)现有如下两个方案供企业选择:

方案1:企业不与保险公司合作,职工不交保险,若出意外,企业自行拿出与保险公司提供的等额赔偿金赔付给出意外职工,且企业开展这项工作每年还需另外固定支出12万元;

方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.

请根据企业成本差异给出选择合适方案的建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)[选修4-5:不等式选讲]

已知函数=|x-a|+(a≠0)

(1)若不等式-≤1恒成立,求实数m的最大值;

(2)当a<时,函数g(x)=+|2x-1|有零点,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数,求的极值;

(2)证明:.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,抛物线与椭圆相交所得的线段长为3,椭圆的左、右焦点分别为,动点在椭圆.

1)求椭圆的方程;

2)设直线的另一个交点为,过分别作直线的垂线,垂足为轴的交点为.的面积成等差数列,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为.

)求抽取的卡片上的数字满足的概率;

)求抽取的卡片上的数字不完全相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,已知.是线段的中点.

1)求直线与平面所成角的正弦值;

2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.

1)若.

①求数列的通项公式;

②证明:对 .

2)若,且对,有,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,为正三角形, ,点在线段上,且.

1)证明:

2)求和平面所成角的正弦值.

查看答案和解析>>

同步练习册答案