精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在(0,+∞)上的单调函数,且对任意的正数x,y都有f(x•y)=f(x)+f(y),若数列{an}的前n项和为Sn,且满足f(Sn+2)-f(an)=f(3)(n∈N*),则a3=
 
考点:数列的求和,抽象函数及其应用
专题:等差数列与等比数列
分析:由已知得Sn+2=3an,从而推导出数列{an}是一个以1为首项,以
3
2
为公比的等比数列,由此能求出a3
解答: 解:∵对任意的正数x,y都有f(x•y)=f(x)+f(y),
∵f(Sn+2)-f(an)=f(3),
∴f(Sn+2)=f(3)+f(an)=f(3•an
又∵函数f(x)是定义在(0,+∞)上的单调函数,
∴Sn+2=3an…①
当n=1时,S1+2=a1+2=3a1,解得an=1
当n≥2时,Sn-1+2=3an-1…②
①-②得:an=3an-3an-1
an
an-1
=
3
2

∴数列{an}是一个以1为首项,以
3
2
为公比的等比数列,
∴a3=(
3
2
2=
9
4

故答案为:
9
4
点评:本题考查数列的第三项的求法,是中档题,解题时要认真审题,注意抽象函数的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,则折起后形成的三棱锥D-ABC的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程log1+yx+log1-yx=2log1+yxlog1-yx所表示的曲线是如下图所示的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

某大型养鸡场在本年度的第x月的盈利y(万元)与x的对应值如表:
x1234
y65708090
注:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2

(1)依据这些数据求出x,y之间的回归直线方程
?
y
=
?
b
x+
?
a

(2)依据此回归直线方程预测第五个月大约能盈利多少万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(-2,4)且在两坐标轴上截距的绝对值相等的直线有(  )
A、1条B、2条C、3条D、4条

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2ax-
b
x
+lnx.
(Ⅰ)当b=a时,若f(x)在(0,+∞)上是单调函数,求a的取值范围.
(Ⅱ)若f(x)在x=m,x=n(m<n)处取得极值,若方程f(x)=c在(0,2n]上有唯一解,则c的取值范围为 {x|x<x0或s≤x<t},求t-s的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
1
2
|x|和g(x)=lg(2x+t)(t为常数).
(1)判断并证明f(x)的奇偶性;
(2)若x∈[0,1]时,g(x)有意义,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax3-bx2+(2-b)x+1(a,b是实数,a≠0)在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.
(1)求证:0<a<2b<3a:
(2)若函数g(x)=f′(x)-2+a-2b.设g(x)的零点为α,β,求|α-β|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:实数a,b,c全都是正数.求证:(a+b+c)•(
1
a
+
1
b
+
1
c
)≥9.

查看答案和解析>>

同步练习册答案