精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F是线段B1D上的两个动点,且EF= ,则下列结论错误的是(
A.AC⊥BF
B.直线AE,BF所成的角为定值
C.EF∥平面ABC
D.三棱锥A﹣BEF的体积为定值

【答案】B
【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,又BE平面BB1D1D,∴AC⊥BE,故A正确; ∵当点E在D1处,F为D1B1的中点时,异面直线AE,BF所成的角是∠OEB,当E在上底面的中心时,F在C1的位置,异面直线AE,BF所成的角是∠OE1B,显然两个角不相等,B不正确;
∵平面ABCD∥平面A1B1C1D1 , EF平面A1B1C1D1 , ∴EF∥平面ABCD,故C正确;
∵由于点B到直线B1D1的距离不变,故△BEF的面积为定值.又点A到平面BEF的距离为 ,故VABEF为定值.D正确;
故选B.

通过直线AC垂直平面平面BB1D1D,判断A是正确的;通过直线EF垂直于直线AB1 , AD1 , 判断A1C⊥平面AEF是正确的;计算三角形BEF 的面积和A到平面BEF的距离是定值,说明C是正确的;只需找出两个特殊位置,即可判断D是不正确的;综合可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数g(x)= 是奇函数,f(x)=log4(4x+1)﹣mx是偶函数.
(1)求m+n的值;
(2)设h(x)=f(x)+ x,若g(x)>h[log4(2a+1)]对任意x≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的长轴是短轴的两倍,点P( )在椭圆上,不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为k1、k、k2 , 且k1、k、k2恰好构成等比数列,记△AOB的面积为S.
(1)求椭圆C的方程;
(2)试判断|OA|2+|OB|2是否为定值?若是,求出这个值;若不是,请说明理由?
(3)求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为1的菱形,∠BAD=60°,侧棱PA⊥底面ABCD,E、F分别是PA、PC的中点.
(Ⅰ)证明:PA∥平面FBD;
(Ⅱ)若PA=1,在棱PC上是否存在一点M使得二面角E﹣BD﹣M的大小为60°.若存在,求出PM的长,不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体的六条棱中,有五条棱长都等于a,则该四面体的体积的最大值为(
A. ?a3
B. ?a3
C. ?a3
D. ?a3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个简单几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是等腰直角三角形,则该几何体的体积为 , 表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+2(a﹣1)x+2在区间[﹣1,2]上单调,则实数a的取值范围为(
A.[2,+∞)
B.(﹣∞,﹣1]
C.(﹣∞,﹣1]∪[2,+∞)
D.(﹣∞,﹣1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2 ,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y= +lg(﹣x2+4x﹣3)的定义域为M,
(1)求M;
(2)当x∈M时,求函数f(x)=a2x+2+34x(a<﹣3)的最小值.

查看答案和解析>>

同步练习册答案