精英家教网 > 高中数学 > 题目详情
3.函数f(x)=x2-4x+5-2lnx的零点个数为(  )
A.0B.1C.2D.3

分析 由题意得,函数零点个数即函数图象与x轴交点个数,将其转化为两个函数图象交点个数即可.

解答 解:由题意得:
f(x)=x2-4x+5-2lnx的零点个数即为x2-4x+5-2lnx=0的解的个数,
变形为x2-4x+5=2lnx,即函数y=x2-4x+5与函数y=2lnx的交点个数,
分别画出两个函数图象如下图(其中蓝色实线为y=x2-4x+5,红色实线为y=2lnx):

所以函数图象有两个交点,即f(x)=x2-4x+5-2lnx的零点个数为2,
故选:C.

点评 本题难度中上,考察学生对函数零点知识点的掌握情况,解题关键在于将零点问题转化为函数交点问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知定点M(-$\sqrt{2},0}$),N是圆C:(x-$\sqrt{2}}$)2+y2=16(C为圆心) 上的动点,MN的垂直平分线与NC交于点E.
(1)求动点E的轨迹方程C1
(2)直线l与轨迹C1交于P,Q两点,与抛物线C2:x2=4y交于A,B两点,且抛物线C2在点A,B处的切线垂直相交于S,设点S到直线l的距离为d,试问:是否存在直线l,使得d=$\sqrt{|{AB}|•|{PQ}|}$?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=($\frac{1}{2}$)x-log${\;}_{\frac{1}{2}}$x的零点所在的区间是(  )
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设命题p:方程$\frac{{x}^{2}}{1-m}$+$\frac{{y}^{2}}{m+2}$=1表示双曲线;命题q:$\frac{{x}^{2}}{2m}$+$\frac{{y}^{2}}{2-m}$=1表示焦点在x轴上的椭圆,若p∧q是假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知焦点在x轴上的椭圆(中心在原点)两个焦点分别是F1、F2,与x轴左右两个交点分别是A1,A2,且|A1F1|=3,|A2F1|=5,则椭圆的离心率是(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知0<a<3,复数z=a+i(i是虚数单位),则|z|的取值范围是(  )
A.(1,$\sqrt{10}$)B.(1,$\sqrt{3}$)C.(1,3)D.(1,10)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数y=sinx(x∈R)的图象上所有点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),再将所得图象向右平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,则y=g(x)的单调递增区间为(  )
A.[-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ](k∈Z)B.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)
C.[-$\frac{2π}{3}$+4kπ,$\frac{4π}{3}$+4kπ](k∈Z)D.[-$\frac{5π}{6}$+4kπ,$\frac{7π}{6}$+4kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

若集合满足,则命题“”是命题“”的 条件.(填“充分不必要”,“必要不充分”,“充要”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a>b,则下列结论一定正确的是(  )
A.a3>b3B.$\frac{1}{a}$<$\frac{1}{b}$C.lga>lgbD.$\sqrt{a}$>$\sqrt{b}$

查看答案和解析>>

同步练习册答案