精英家教网 > 高中数学 > 题目详情

【题目】如图所示,△ABC内接于圆O,D是 的中点,∠BAC的平分线分别交BC和圆O于点E,F. (Ⅰ)求证:BF是△ABE外接圆的切线;
(Ⅱ)若AB=3,AC=2,求DB2﹣DA2的值.

【答案】解:(Ⅰ)设△ABE外接圆的圆心为O′,连结BO′并延长交圆O′于G点,连结GE, 则∠BEG=90°,∠BAE=∠BGE.
因为AF平分∠BAC,
所以
所以∠FBE=∠BAE,
所以∠FBG=∠FBE+∠EBG=∠BGE+∠EBG=180°﹣∠BEG=90°,
所以O′B⊥BF,
所以BF是△ABE外接圆的切线
(Ⅱ)连接DF,则DF⊥BC,
所以DF是圆O的直径,
因为BD2+BF2=DF2 , DA2+AF2=DF2
所以BD2﹣DA2=AF2﹣BF2
因为AF平分∠BAC,
所以△ABF∽△AEC,
所以 =
所以ABAC=AEAF=(AF﹣EF)AF,
因为∠FBE=∠BAE,
所以△FBE∽△FAB,从而BF2=FEFA,
所以AB﹣AC=AF2﹣BF2
所以BD2﹣DA2=ABAC=6

【解析】(Ⅰ)设△ABE外接圆的圆心为O′,连结BO′并延长交圆O′于G点,连结GE,则∠BEG=90°,∠BAE=∠BGE,可证∠FBE=∠BAE,进而证明∠FBG=90°,即可得证BF是△ABE外接圆的切线.(Ⅱ)连接DF,则DF⊥BC,由勾股定理可得BD2﹣DA2=AF2﹣BF2 , 利用相似三角形的性质可得ABAC=AEAF=(AF﹣EF)AF,由△FBE∽△FAB,从而BF2=FEFA,得AB﹣AC=AF2﹣BF2 , 进而可求BD2﹣DA2=ABAC=6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

函数的一条对称轴是

函数的图象关于点(,0)对称;

正弦函数在第一象限为增函数

,则,其中

以上四个命题中正确的有    (填写正确命题前面的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数有两个零点,且.

(1)求的求值范围;

(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2011年至2017年农村居民家庭人均纯收入y(单位:千元)的数据如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求样本中心点坐标;

(2)已知两变量线性相关,求y关于t的线性回归方程;

(3)利用(2)中的线性回归方程,分析2011年至2017年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2019年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】类似于十进制中的逢10进1,十二进制的进位原则是逢12进1,采用数字0,1,2,…,9和字母M,N作为计数符号,这些符号与十进制的数字对应关系如下表:

十二进制

0

1

2

3

4

5

6

7

8

9

M

N

十进制

0

1

2

3

4

5

6

7

8

9

10

11

例如,因为563=3×122+10×12+11,所以十进制中的563在十二进制中被表示为3MN(12).那么十进制中的2008在十二进制中被表示为(  )

A. 11N4(12) B. 1N25(12) C. 12N4(12) D. 1N24(12)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式|x+3|<2x+1的解集为{x|x>m}. (Ⅰ)求m的值;
(Ⅱ)设关于x的方程|x﹣t|+|x+ |=m(t≠0)有解,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)、平均分、众数和中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体中, 平面,,四边形是边长为的菱形.

(1)证明:

(2)线段上是否存在点,使平面,若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下资料:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差x/℃

10

11

13

12

8

发芽数y/颗

23

25

30

26

16

(Ⅰ)从这5天中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25”的概率.
(Ⅱ)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出y关于x的线性回归方程 = x+
(参考公式: = =

查看答案和解析>>

同步练习册答案