精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C的对边分别为a、b、c,且2b•cosA=c•cosA+a•cosC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=
7
,b+c=4,求△ABC的面积.
分析:(Ⅰ)根据正弦定理把题设等式中的边换成相应角的正弦,化简整理可求得cosA,进而求得A.
(Ⅱ)根据余弦定理得a2=b2+c2-2bccos60°=7,进而根据b+c=4求得bc,进而根据三角形的面积公式求得△ABC面积.
解答:解:(Ⅰ)根据正弦定理∵2b•cosA=c•cosA+a•cosC.
∴2sinB•cosA=sinC•cosA+sinA•cosC,
∵sinB≠0
∴cosA=
1
2

又∵0°<A<180°,∴A=60°.
(Ⅱ)由余弦定理得:
a2=b2+c2-2bccos60°=7,
代入b+c=4得bc=3,
故△ABC面积为S=
1
2
bcsinA=
3
3
4
点评:本题主要考查了正弦定理和余弦定理的应用.解题的关键是利用这两个定理完成了边角问题的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案