精英家教网 > 高中数学 > 题目详情

已知函数,是否存在实数a、b、c,使同时满足下列三个条件:(1)定义域为R的奇函数;(2)在上是增函数;(3)最大值是1.若存在,求出a、b、c;若不存在,说明理由.

是奇函数

,即

,但时,,不合题意;故.这时上是增函数,且最大值是1.

上是增函数,且最大值是3.

,当,故;又当时,;当时,

,又当时,,当时,

所以是增函数,在(-1,1)上是减函数.

时,最大值为3.

经验证:时,符合题设条件,所以存在满足条件的a、b、c,即


解析:

本题是解决存在性的问题,首先假设三个参数a、b、c存在,然后用三个已给条件逐一确定a、b、c的值,用导数法解决有关单调性和最值问题是很重要的数学方法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1a-x
-1
(其中a为常数,x≠a).利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(Ⅰ)当a=1且x1=-1时,求数列{xn}的通项公式;
(Ⅱ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(Ⅲ)是否存在实数a,使得取定义域中的任一实数值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asinωx+Bcosωx(A、B、ω是实常数,ω>0)的最小正周期为2,并当x=
1
3
时,f(x)max=2.
(1)求f(x).
(2)在闭区间[
21
4
23
4
]上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c(其中b,c为实常数).
(Ⅰ)若b>2,且y=f(sinx)(x∈R)的最大值为5,最小值为-1,求函数y=f(x)的解析式;
(Ⅱ)是否存在这样的函数y=f(x),使得{y|y=x2+bx+c,-1≤x≤0}=[-1,0]?若存在,求出函数y=f(x)的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+3bx2-(a+3b)x+1(ab≠0)在x=1处取得极值,在x=2处的切线平行于向量
OP
=(b+5,5a).
(1)求a,b的值,并求f(x)的单调区间;
(2)是否存在正整数m,使得方程f(x)=6x-
16
3
在区间(m,m+1)内有且只有两个不等实根?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,问是否存在这样的实数值,使函数在上递减,在上递增?

查看答案和解析>>

同步练习册答案