精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数fx=x2-2m+1x+m

1)若方程fx=0有两个不等的实根x1x2,且-1x10x21,求m的取值范围;

2)若对任意的x[12]≤2恒成立,求m的取值范围.

【答案】1)(-0 2[-+∞

【解析】

1)二次函数fx=x2-2m+1x+m开口向上,方程fx=0有两个不等的实根x1x2,且-1x10x21,找到等价条件,解不等式组即可;

2)把对任意的x[12]≤2恒成立,等价转换为对任意的x[12]x2-2m+3x+m≤0恒成立,得到关于m的不等式组,求解即可求得m的取值范围.

1)由方程fx=0有两个不等的实根x1x2,且-1x10x21

,解得-m0

m的取值范围是(-0);

2)对任意的x[12]≤2恒成立,即对任意的x[12]x2-2m+1x+m≤2x恒成立,

∴对任意的x[12]x2-2m+3x+m≤0恒成立,

,解得m≥-

m的取值范围是[-+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知mR,命题p:对任意x[01],不等式x22x1≥m23m恒成立,命题q:存在x[11],使得m≤2x1

)若命题p为真命题,求m的取值范围;

)若命題q为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医疗器械公司在全国共有个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这个销售点的年销量绘制出如下的频率分布直方图.

(1)完成年销售任务的销售点有多少个?

(2)若用分层抽样的方法从这个销售点中抽取容量为的样本,求该五组,(单位:千台)中每组分别应抽取的销售点数量.

(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取个,求这两个销售点不在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为.以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,求两点间的距离的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查中国及美国的高中生在“家”、“朋友聚集的地方”、“个人空间”这三个场所中感到最幸福的场所是哪个,从中国某城市的高中生中随机抽取了55人,从美国某城市高中生中随机抽取了45人进行答题。中国高中生的答题情况:选择“家”的高中生的人数占,选择“朋友聚集的地方”的高中生的人数占,选择“个人空间”的高中生的人数占,美国高中生的答题情况:选择“家”的高中生的人数占,选择“朋友聚集的地方”的高中生的人数占,选择“个人空间”的高中生的人数占

(1)请根据以上调查结果将下面的2X2列联表补充完整,并判断能否有95%的把握认为恋家(在家里感到最幸福)与国别有关;

在家里感到最幸福

在其他场所感到最幸福

总计

中国高中生

美国高中生

总计

(2)从被调查的不“恋家”的美国高中生中,用分层抽样的方法随机选出4人接受进一步调查,再从4人中随机选出2人到中国交流学习,求2人中含有在“个人空间”感到最幸福的高中生的概率。

0.050

0.025

0.010

0.001

3.841

5.024

6.635

10.8

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在△ABC中,AD是∠BAC的平分线,且.

1)求k的取值范围;

2)若,求k为何值时,BC最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲袋内摸出1个红球的概率是,从乙袋内摸出1个红球的概率是,从两袋内各摸出1个球,则等于( )

A. 2个球不都是红球的概率B. 2个球都是红球的概率

C. 至少有1个红球的概率D. 2个球中恰好有1个红球的概率

查看答案和解析>>

同步练习册答案