Èçͼ£¬ÔÚÕýÈýÀâÖùABC-A1B1C1ÖУ¬ËùÓÐÀâµÄ³¤¶È¶¼ÊÇ1£¬MÊÇBC±ßµÄÖе㣬PÊÇAA1±ßÉϵĵ㣬ÇÒPA=
6
4
£®
£¨1£©Ç󣺵ãPµ½ÀâBCµÄ¾àÀ룻
£¨2£©ÎÊ£ºÔÚ²àÀâCC1ÉÏÊÇ·ñ´æÔÚµãN£¬Ê¹µÃÒìÃæÖ±ÏßAB1ÓëMNËù³É½ÇΪ45¡ã£¿Èô´æÔÚ£¬Çë˵Ã÷µãNµÄλÖã»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©¶¨Ò壺Èç¹ûƽÃæ¦Á¾­¹ýÏ߶ÎAA¡äµÄÖе㣬²¢ÓëÏ߶ÎAA¡ä´¹Ö±£¬Ôò³ÆµãA¹ØÓÚƽÃæ¦ÁµÄ¶Ô³ÆµãΪµãA¡ä£®ÉèµãA¹ØÓÚƽÃæPBCµÄ¶Ô³ÆµãΪA¡ä£¬Ç󣺵ãA¡äµ½Æ½ÃæAMC1µÄ¾àÀ룮
·ÖÎö£º£¨1£©ÒÔAΪԭµã£¬ÒÔAB˳ʱÕëÐýת30¡ãµÃµ½µÄÖ±ÏßΪxÖᣬÒÔACΪyÖᣬÒÔAA1ΪzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬Ôò
BP
=(-
3
2
£¬-
1
2
£¬
6
4
)
£¬
BC
=(-
3
2
£¬
1
2
£¬0)
£¬ÓÉÏòÁ¿·¨ÄÜÇó³öµãPµ½ÀâBCµÄ¾àÀ룮
£¨2£©ÉèÔÚ²àÀâCC1ÉÏÊÇ·ñ´æÔÚµãN£¨0£¬0£¬z£©£¬Ê¹µÃÒìÃæÖ±ÏßAB1ÓëMNËù³É½ÇΪ45¡ã£¬ÓÉMÊÇBC±ßµÄÖе㣬֪
NM
=(
3
4
£¬
3
4
£¬-z)
£¬
AB1
=(
3
2
£¬
1
2
£¬1)
£¬ÓÉÒìÃæÖ±ÏßAB1ÓëMNËù³É½ÇΪ45¡ã£¬Öªcos45¡ã=
3
8
+
3
8
-z
z2+
3
4
2
£¬½âµÃz=-
1
8
£¬²»ºÏÌâÒ⣮¹ÊÔÚ²àÀâCC1ÉÏÊDz»´æÔÚµãN£®
£¨3£©ÉèƽÃæPBCµÄƽÃæ·½³ÌΪAx+By+Cz+D=0£¬ÓÉP£¨0£¬0£¬
6
4
£©£¬C£¨0£¬1£¬0£©£¬B£¨
3
2
£¬
1
2
£¬0
£©£¬Öª
6
4
C+D=0
B+D=0
3
2
A+
1
2
B+D=0
£¬¹ÊƽÃæPBCµÄƽÃæ·½³ÌΪx+
3
y+2
2
z-
3
=0
£¬¹ýµãA£¨0£¬0£¬0£©ÇÒ´¹Ö±ÓÚƽÃæPBCµÄÖ±Ïß·½³ÌÊÇ£º
x
1
=
y
3
=
z
2
2
£¬Áî
x
1
=
y
3
=
z
2
2
=t£¬µÃµ½µãA£¨0£¬0£¬0£©ÇÒ´¹Ö±ÓÚƽÃæPBCµÄÖ±ÏßÓëƽÃæµÄ½»µãÊÇ£¨
3
12
£¬
1
4
£¬
6
6
£©£¬´Ó¶øµÃµ½A¡ä(
3
6
£¬
1
2
£¬
6
3
)
£®ÓÉ´ËÄÜÇó³öµãA¡äµ½Æ½ÃæAMC1µÄ¾àÀ룮
½â´ð£º½â£º£¨1£©ÒÔAΪԭµã£¬ÒÔAB˳ʱÕëÐýת30¡ãµÃµ½µÄÖ±ÏßΪxÖᣬ
ÒÔACΪyÖᣬÒÔAA1ΪzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
¡ßÔÚÕýÈýÀâÖùABC-A1B1C1ÖУ¬ËùÓÐÀâµÄ³¤¶È¶¼ÊÇ1£¬
PÊÇAA1±ßÉϵĵ㣬ÇÒPA=
6
4
£®
¡àP£¨0£¬0£¬
6
4
£©£¬C£¨0£¬1£¬0£©£¬B£¨
3
2
£¬
1
2
£¬0
£©£¬
¡à
BP
=(-
3
2
£¬-
1
2
£¬
6
4
)
£¬
BC
=(-
3
2
£¬
1
2
£¬0)
£¬
¡àµãPµ½ÀâBCµÄ¾àÀëd=|
BP
|•
1-(cos£¼
BP
£¬
BC
£¾)2

=
22
4
1-(
2
22
)
2

=
3
2
4
£®
£¨2£©ÉèÔÚ²àÀâCC1ÉÏÊÇ·ñ´æÔÚµãN£¨0£¬0£¬z£©£¬Ê¹µÃÒìÃæÖ±ÏßAB1ÓëMNËù³É½ÇΪ45¡ã£¬
¡ßMÊÇBC±ßµÄÖе㣬
¡àM£¨
3
4
£¬
3
4
£¬0
£©£¬A£¨0£¬0£¬0£©£¬B1(
3
2
£¬
1
2
£¬1)
£¬
¡à
NM
=(
3
4
£¬
3
4
£¬-z)
£¬
AB1
=(
3
2
£¬
1
2
£¬1)
£¬
¡ßÒìÃæÖ±ÏßAB1ÓëMNËù³É½ÇΪ45¡ã£¬
¡àcos45¡ã=
3
8
+
3
8
-z
z2+
3
4
2
£¬
ÕûÀí£¬µÃ
3
4
-z
z2+
3
4
=1
£¬
½âµÃz=-
1
8
£¬²»ºÏÌâÒ⣮
¡àÔÚ²àÀâCC1ÉÏÊDz»´æÔÚµãN£®
£¨3£©¡ßP£¨0£¬0£¬
6
4
£©£¬C£¨0£¬1£¬0£©£¬B£¨
3
2
£¬
1
2
£¬0
£©£¬
ÉèƽÃæPBCµÄƽÃæ·½³ÌΪAx+By+Cz+D=0£¬
Ôò
6
4
C+D=0
B+D=0
3
2
A+
1
2
B+D=0
£¬
¡àC=-
2
6
3
D
£¬B=-D£¬A=-
3
3
D
£¬
¡àƽÃæPBCµÄƽÃæ·½³ÌΪ-
3
3
Dx-Dy-
2
6
3
Dz+D=0
£¬
¼´x+
3
y+2
2
z-
3
=0
£¬
¹ýµãA£¨0£¬0£¬0£©ÇÒ´¹Ö±ÓÚƽÃæPBCµÄÖ±Ïß·½³ÌÊÇ£º
x
1
=
y
3
=
z
2
2
£¬
Áî
x
1
=
y
3
=
z
2
2
=t£¬
Ôòx=t£¬y=
3
t
£¬z=2
2
t£¬
´úÈëƽÃæ·½³Ìx+
3
y+2
2
z-
3
=0
£¬
µÃt+3t+8t-
3
=0£¬
½âµÃt=
3
12
£¬
¡à¹ýµãA£¨0£¬0£¬0£©ÇÒ´¹Ö±ÓÚƽÃæPBCµÄÖ±ÏßÓëƽÃæµÄ½»µãÊÇ£¨
3
12
£¬
1
4
£¬
6
6
£©£¬
¡àÉèµãA¹ØÓÚƽÃæPBCµÄ¶Ô³ÆµãA¡ä£¨x£¬y£¬z£©£¬
Ôòx=2¡Á
3
12
=
3
6
£¬y=2¡Á
1
4
=
1
2
£¬z=2¡Á
Á·Ï°²áϵÁдð°¸
Ä꼶 ¸ßÖÐ¿Î³Ì Ä꼶 ³õÖпγÌ
¸ßÒ» ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ ³õÒ» ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡
¸ß¶þ ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ ³õ¶þ ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡
¸ßÈý ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ ³õÈý ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÔÚÕýÈýÀâÖùABC-A1B1C1ÖУ¬AB=1£¬Èô¶þÃæ½ÇC-AB-C1µÄ´óСΪ60¡ã£¬ÔòµãCµ½Æ½ÃæC1ABµÄ¾àÀëΪ£¨¡¡¡¡£©
A¡¢
3
4
B¡¢
1
2
C¡¢
3
2
D¡¢1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚÕýÈýÀâÖùABC-A1B1C1ÖУ¬ÒÑÖªAB=1£¬DÔÚÀâBB1ÉÏ£¬ÇÒBD=1£¬ÈôADÓëƽÃæAA1CC1Ëù³ÉµÄ½ÇΪa£¬Ôòsina=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÔÚÕýÈýÀâÖùABC-A1B1C1ÖУ¬D¡¢E¡¢G·Ö±ðÊÇAB¡¢BB1¡¢AC1µÄÖе㣬AB=BB1=2£®
£¨¢ñ£©ÔÚÀâB1C1ÉÏÊÇ·ñ´æÔÚµãFʹGF¡ÎDE£¿Èç¹û´æÔÚ£¬ÊÔÈ·¶¨ËüµÄλÖã»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ò£©Çó½ØÃæDEGÓëµ×ÃæABCËù³ÉÈñ¶þÃæ½ÇµÄÕýÇÐÖµ£»
£¨¢ó£©ÇóB1µ½½ØÃæDEGµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÔÚÕýÈýÀâÖùABC-A1B1C1ÖУ¬AA1=4£¬AB=2£¬MÊÇACµÄÖе㣬µãNÔÚAA1ÉÏ£¬AN=
14
£®
£¨¢ñ£©ÇóBC1Óë²àÃæACC1A1Ëù³É½ÇµÄ´óС£»
£¨¢ò£©Çó¶þÃæ½ÇC1-BM-CµÄÕýÇÐÖµ£»
£¨¢ó£©Ö¤Ã÷MN¡ÍBC1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Âí°°É½¶þÄ££©Èçͼ£¬ÔÚÕýÈýÀâÖùABCÒ»DEFÖУ¬AB=2£¬AD=1£¬PÊÇCFµÄÑÓ³¤ÏßÉÏÒ»µã£¬¹ýA¡¢B¡¢PÈýµãµÄƽÃæ½»FDÓÚM£¬½»EFÓÚN£®
£¨I£©ÇóÖ¤£ºMN¡ÎƽÃæCDE£º
£¨II£©µ±Æ½ÃæPAB¡ÍƽÃæCDEʱ£¬ÇóÈýËǫ́MNF-ABCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸