精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为:为参数).

1)求曲线的直角坐标方程与曲线的普通方程;

2)将曲线经过伸缩变换后得到曲线,若分别是曲线和曲线上的动点,求的最小值.

【答案】1..(2

【解析】

1的极坐标方程转化为,由此能求出曲线的直角坐标方程.由曲线的参数方程能求出曲线的普通方程.

2)将曲线经过伸缩变换:,得到的方程为,则曲线的参数方程为:,设,由此能求出的最小值.

解:(1的极坐标方程是

曲线的直角坐标方程为

曲线的参数方程为:为参数).

曲线的普通方程为

2)将曲线经过伸缩变换:

得到的方程为

则曲线的参数方程为:

则点到曲线的距离为:

时,有最小值

的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)若上成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Γy22pxp0)的焦点为FP是抛物线Γ上一点,且在第一象限,满足22

1)求抛物线Γ的方程;

2)已知经过点A3,﹣2)的直线交抛物线ΓMN两点,经过定点B3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn,且=9S6=60

(I)求数列{an}的通项公式;

II)若数列{bn}满足bn+1bn=n∈N+)且b1=3,求数列的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)当时,求曲线在点处的切线方程;

2)当时,求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动点分别与两个定点的连线的斜率之积为.

(1)求动点的轨迹的方程;

(2)设过点的直线与轨迹交于两点,判断直线与以线段为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,求函数的极值;

2)若有两个零点求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足,且当时,成立,若,则abc的大小关系是()

A. aB. C. D. c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设动圆经过点,且与圆为圆心)相内切.

(Ⅰ)求动圆圆心的轨迹的方程

(Ⅱ)设经过的直线与轨迹交于两点,且满足的点也在轨迹上,求四边形的面积.

查看答案和解析>>

同步练习册答案