精英家教网 > 高中数学 > 题目详情
P为椭圆+=1上的一点,F1和F2是其焦点,若∠F1PF2=60°,则△F1PF2的面积为__________________.
利用椭圆定义和三角形的面积公式.
∵|PF1|+|PF2|=2a=20,|F1F2|=2c=2=12,
由余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos∠F1PF2=(|PF1|+|PF2|)2-2|PF1||PF2|-2|PF1||PF2|cos∠F1PF2.
故有122=202-2|PF1||PF2|-2|PF1||PF2|cos60°.
∴3|PF1||PF2|=400-144=256.
∴|PF1||PF2|=.
=|PF1||PF2|sin60°=××=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知椭圆E:(其中),直 线L与椭圆只有一个公共点T;两条平行于y轴的直线分别过椭圆的左、右焦点F1、F2,且直线L分别相交于A、B两点.

(Ⅰ)若直线L在轴上的截距为,求证:直线L斜率的绝对值与椭圆E的离心率相等;(Ⅱ)若的最大值为1200,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知圆,定点A(3,0),M为圆C上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。
(1)求曲线E的方程;
(2)求过点Q(2,1)的弦的中点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆,坐标原点为O.圆C上任意一点A在x轴上的射影为点B,已知向量.
(1)求动点Q的轨迹E的方程;
(2)当时,设动点Q关于x轴的对称点为点P,直线PD交轨迹E于点F(异于P点),证明:直线QF与x轴交于定点,并求定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆与直线交于两点,过原点与线段中点的直线的斜率为,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

化简方程+=10为不含根式的形式是(    )
A.+="1"B.+=1
C.+="1"D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆+=1的两个焦点分别为F1、F2,P为椭圆上一点,且PF1⊥PF2,则||PF1|-|PF2||的值为(   )
A.2B.6C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求椭圆=1(a>b>0)的内接矩形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

离心率为,且过点(2,0)的椭圆的标准方程为(   )
A.+y2=1或+="1"B.+y2=1或+=1
C.+y2="1"D.+=1

查看答案和解析>>

同步练习册答案