精英家教网 > 高中数学 > 题目详情

【题目】在任意三角形ABC内任取一点Q,使SABQ SABC的概率为

【答案】
【解析】解:分别取CA、CB点D、E,且 = = ,连接DE ∴DE上一点到AB的距离等于C到AB距离的
设C到AB的距离为h,则当动点P位于线段DE上时,
△QAB的面积S= AB h= SABC= S
因此,当点Q位于△ABC内部,且位于线段DE上方时,△QAB的面积大于 S.
∵△CDE∽△CAB,且相似比 =
∴SCDE:SABC=
由此可得△PAB的面积大于 S的概率为P=
所以答案是:

【考点精析】通过灵活运用几何概型,掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】化简sin(x+y)sinx+cos(x+y)cosx等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

(1)求的值;

(2)求证:数列是等比数列;

(3)令),如果对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N* . (Ⅰ)证明:数列{ }是等差数列;
(Ⅱ)设bn=3n ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约(
A.60辆
B.80辆
C.100辆
D.120辆

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后随机投掷2枚正方体骰子,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,
(1)求点P(x,y)在直线y=x﹣1上的概率;
(2)求点P(x,y)满足y2<4x的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(1)求样本容量n和频率分布直方图中的x,y的值;
(2)估计本次竞赛学生成绩的中位数和平均分;
(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[90,100]内的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.

⑴求椭圆C的标准方程;

⑵已知点AB为动直线与椭圆C的两个交点,问:在x轴上是否存在定点E,使得为定值?若存在,试求出点E的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左右顶点分别为,右焦点为,焦距为,点是椭圆C上异于两点的动点, 的面积最大值为.

(1)求椭圆C的方程;

(2)若直线与直线交于点,试判断以为直径的圆与直线的位置关系,并作出证明.

查看答案和解析>>

同步练习册答案