ÒÑÖªF1¡¢F2ΪΪ˫ÇúÏßC£º
x2
a2
-
y2
b2
=1µÄÁ½¸ö½¹µã£¬½¹¾à|F1F2|=6£¬¹ý×ó½¹µãF1´¹Ö±ÓÚxÖáµÄÖ±Ïߣ¬ÓëË«ÇúÏßCÏཻÓÚA£¬BÁ½µã£¬ÇÒ¡÷ABF2ΪµÈ±ßÈý½ÇÐΣ®
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÉèTΪֱÏßx=1ÉÏÈÎÒâÒ»µã£¬¹ýÓÒ½¹µãF2×÷TF2µÄ´¹Ïß½»Ë«ÇúÏßCÓëP£¬QÁ½µã£¬ÇóÖ¤£ºÖ±ÏßOTƽ·ÖÏ߶ÎPQ£¨ÆäÖÐOΪ×ø±êÔ­µã£©£»
£¨3£©ÊÇ·ñ´æÔÚ¹ýÓÒ½¹µãF2µÄÖ±Ïßl£¬ËüÓëË«ÇúÏßCµÄÁ½Ìõ½¥½üÏß·Ö±ðÏཻÓÚR£¬SÁ½µã£¬ÇÒʹµÃ¡÷F1RSµÄÃæ»ýΪ6
2
£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÒÑÖªµÃ2c=6£¬|AF1|=2
3
£¬|AF2|=4
3
£¬´Ó¶ø2a=||AF2|-|AF1||=2
3
£¬ÓÉ´ËÄÜÇó³öË«ÇúÏßCµÄ·½³Ì£®
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÖеãT¡ä£¨x0£¬y0£©£¬Ôòx1+x2=2x0£¬y1+y2=2y0£¬°ÑP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©·Ö±ð´úÈëË«ÇúÏßCµÄ·½³Ì
x2
3
-
y2
6
=1
£¬ÀûÓõã²î·¨ÄÜÍƵ¼³öTΪPQµÄÖе㣮
£¨3£©¼ÙÉè´æÔÚÕâÑùµÄÖ±Ïߣ¬ÉèÖ±Ïßl£ºx=my+3£¬R£¨xR£¬yR£©£¬S£¨xS£¬yS£©£¬·Ö±ðÇó³öyR=
3
2
1-
2
m
£¬yS=
-3
2
1+
2
m
£¬ÓÉ´ËÍƵ¼³öÖ±ÏßlµÄ·½³Ì£®
½â´ð£º £¨1£©½â£º¡ßF1¡¢F2ΪΪ˫ÇúÏßC£º
x2
a2
-
y2
b2
=1µÄÁ½¸ö½¹µã£¬½¹¾à|F1F2|=6£¬
¡à2c=6£¬¼´c=3£¬
Éè|AF2|=2x£¬Ôò36+x2=4x2£¬½âµÃ|AF1|=2
3
£¬|AF2|=4
3
£¬
¡à2a=||AF2|-|AF1||=2
3
£®¡àa=
3
£¬
¡àb2=9-3=6£¬
¡àË«ÇúÏßCµÄ·½³ÌΪ
x2
3
-
y2
6
=1
£®
£¨2£©Ö¤Ã÷£ºÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÖеãT¡ä£¨x0£¬y0£©£¬
Ôòx1+x2=2x0£¬y1+y2=2y0£¬
°ÑP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©·Ö±ð´úÈëË«ÇúÏßCµÄ·½³Ì
x2
3
-
y2
6
=1
£¬
µÃ
2x12-y12=6
2x22-y22=6
£¬
Á½Ê½Ïà¼õ£¬µÃ2£¨x1+x2£©£¨x1-x2£©-£¨y1+y2£©£¨y1-y2£©=0£¬
¡à4x0£¨x1-x2£©-2y0£¨y1-y2£©=0£¬
¡àkPQ=
y1-y2
x1-x2
=
2x0
y0
=-
1
kTF2
=
2
yT
£¬
¡ßTΪֱÏßx=1ÉÏÈÎÒâÒ»µã£¬¹ýÓÒ½¹µãF2×÷TF2µÄ´¹Ïß½»Ë«ÇúÏßCÓëP£¬QÁ½µã£¬
¡àkOT¡ä=
y0
x0
=
yt
1
=kOT£¬
¡àµãT¡äÓëµãTÖغϣ¬¡àTΪPQµÄÖе㣬
¡àÖ±ÏßOTƽ·ÖÏ߶ÎPQ£®
£¨3£©½â£º¼ÙÉè´æÔÚÕâÑùµÄÖ±Ïߣ¬ÉèÖ±Ïßl£ºx=my+3£¬R£¨xR£¬yR£©£¬S£¨xS£¬yS£©£¬
ÁªÁ¢
y=
2
x
x=my+3
£¬µÃyR=
3
2
1-
2
m
£¬
ÁªÁ¢
y=-
2
x
x=my+3
£¬µÃyS=
-3
2
1+
2
m
£¬
S¡÷F1RS=
1
2
¡Á6¡Á|yR-yS|
=6
2
£¬
¡à|
3
2
1-
2
m
+
3
2
1+
2
m
|=2
2
£¬
½âµÃm=¡À
2
£¬¡àÖ±Ïßlx=¡À
2
y+3£®
µãÆÀ£º±¾Ì⿼²éË«ÇúÏß·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßOTƽ·ÖÏ߶ÎPQµÄÖ¤Ã÷£¬¿¼²éÂú×ãÌõ¼þµÄÖ±ÏßÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬½âÌâʱҪעÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èç±íÊÇijУ¸ßÒ»Ä꼶һ´Î¿¼ÊÔÖÐÊýѧºÍÓ¢ÓïµÄ³É¼¨³éÑù£º
        A B C
 A 7 20 5
 B 9 18 6
 C a 4 b
Èô³éȡѧÉúnÈË£¬³É¼¨·ÖΪA£¨ÓÅÐ㣩¡¢B£¨Á¼ºÃ£©¡¢C£¨¼°¸ñ£©Èý¸öµÈ¼¶£¬Éèx£¬y·Ö±ð±íʾÊýѧ³É¼¨ÓëÓ¢Óï³É¼¨£®ÀýÈ磺±íÖÐÊýѧ³É¼¨ÎªBµÈ¼¶µÄ¹²ÓÐ20+18+4=42ÈË£¬ÒÑÖªxÓëy¾ùΪBµÈ¼¶µÄ¸ÅÂÊÊÇ0.18£®
£¨1£©ÈôÔÚ¸ÃÑù±¾ÖУ¬Êýѧ³É¼¨ÓÅÐãÊÇ30%£¬Çóa£¬bµÄÖµ£»
£¨2£©ÔÚÓ¢Óï³É¼¨ÎªCµÈ¼¶µÄѧÉúÖУ¬ÒÑÖªa=10£¬b=8£¬ÇóÊýѧ³É¼¨ÎªAµÈ¼¶µÄÈËÊý±ÈCµÈ¼¶µÄÈËÊýÉÙÊýÉٵĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªP£¨4£¬-1£©£¬FΪÅ×ÎïÏßy2=8xµÄ½¹µã£¬MΪ´ËÅ×ÎïÏßÉϵĵ㣬ÇÒʹ|MP|+|MF|µÄÖµ×îС£¬ÔòMµãµÄ×ø±êΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÈý¸öº¯Êýf£¨x£©=2+x£¬g£¨x£©=x-2£¬h£¨x£©=log2x+xµÄÁãµãÒÀ´ÎΪa£¬b£¬c£¬Ôò£¨¡¡¡¡£©
A¡¢a£¼b£¼c
B¡¢a£¼c£¼b
C¡¢b£¼a£¼c
D¡¢c£¼a£¼b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÑÖªÍÖÔ²µÄ½¹µãΪ£¨-
3
£¬0£©£¨
3
£¬0£©£¬ÀëÐÄÂÊΪ
3
2
£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÈôÔ²M£ºx2+£¨y-m£©2=1Éϵĵ㵽ÍÖÔ²ÉϵĵãµÄ×îÔ¶¾àÀëΪ
5
+1£¬ÇómµÄÖµ£»
£¨3£©¹ý×ø±êÔ­µã×÷бÂÊΪkµÄÖ±Ïßl½»ÍÖÔ²ÓÚP¡¢QÁ½µã£¬µãNΪÍÖÔ²ÉÏÈÎÒâÒ»µã£¨ÒìÓÚµãP£¬Q£©£¬ÉèÖ±ÏßNP£¬NQµÄбÂʾù´æÔÚÇÒ·Ö±ð¼ÇΪkNp£¬kNQ£®Ö¤Ã÷£º¶ÔÈÎÒâk£¬ºãÓÐkNPkNQ=-
1
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãA£¬BµÄ×ø±ê·Ö±ðÊÇ£¨0£¬-1£©£¬£¨0£¬1£©£¬Ö±ÏßAM£¬BMÏཻÓÚµãM£¬ÇÒÖ±ÏßAM£¬BMµÄбÂÊÖ®»ýΪ-
1
2

£¨1£©ÇóµãMµÄ¹ì¼£CµÄ·½³Ì
£¨2£©¹ýD£¨2£¬0£©µÄÖ±ÏßlÓë¹ì¼£CÓÐÁ½¸ö²»Í¬µÄ½»µãʱ£¬ÇólµÄбÂʵÄÈ¡Öµ·¶Î§£»
£¨3£©Èô¹ýD£¨2£¬0£©µÄÖ±ÏßlÓ루1£©ÖеĹ켣C½»ÓÚ²»Í¬µÄE¡¢F£¨EÔÚD¡¢FÖ®¼ä£©£¬Çó¡÷ODEÓë¡÷ODFµÄÃæ»ýÖ®±ÈµÄÈ¡Öµ·¶Î§£¨OΪ×ø±êÔ­µã£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢ÙÔ²µÄÖܳ¤Óë¸ÃÔ²µÄ°ë¾¶¾ßÓÐÏà¹Ø¹Øϵ£»
¢ÚÏßÐԻع鷽³Ì¶ÔÓ¦µÄÖ±Ïßy=bx+aÖÁÉÙ¾­¹ýÆäÑù±¾Êý¾Ýµã£¨x1£¬y1£©£¨x2£¬y2£©£¬¡­£¨xn£¬yn£©ÖеÄÒ»¸öµã£»¢ÛÔڲвîͼÖУ¬²Ð²îµã·Ö²¼µÄ´ú×´ÇøÓòµÄ¿í¶ÈÔ½ÏÁÕ­£¬ÆäÄ£ÐÍÄâºÏµÄ¾«¶ÈÔ½¸ß£»
¢ÜÔڻعé·ÖÎöÖУ¬R2Ϊ0.98µÄÄ£ÐͱÈR2Ϊ0.80µÄÄ£ÐÍÄâºÏµÄЧ¹ûºÃ£®
A¡¢¢Ù¢Û¢ÜB¡¢¢Û¢Ü
C¡¢¢Ú¢Û¢ÜD¡¢¢Ù¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁ³ÌÐò¿òͼ£¬ÔËÐÐÏàÓ¦µÄ³ÌÐò£¬Êä³öµÄ½á¹ûΪ
 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬Èôa=3£¬cosA=-
1
2
£¬Ôò¡÷ABCµÄÍâ½ÓÔ²°ë¾¶ÊÇ£¨¡¡¡¡£©
A¡¢
1
2
B¡¢
3
2
C¡¢2
3
D¡¢
3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸