精英家教网 > 高中数学 > 题目详情

考察下列式子:
,得出的一般性结论为________________________

解析试题分析:由1=12=(2×1-1)2
2+3+4=32=(2×2-1)2
3+4+5+6+7=52=(2×3-1)2
4+5+6+7+8+9+10=72=(2×4-1)2
………
由上边的式子可以得出:第n个等式的左边的第一项为n,接下来依次加1,共有2n-1项,等式右边是2n-1的平方,
从而我们可以得出的一般性结论为:n+(n+1)+…+(2n-1)+…+(3n-2)=(2n-1)2(n∈N*)。
考点:本题主要考查归纳推理。
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).解题时要注意观察,善于总结.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知数列, 则(1)     ;
(2)在这个数列中,若是第8个值等于1的项,则         .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

观察各式:,则依次类推可得           

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知的三边长为,内切圆半径为(用),则;类比这一结论有:若三棱锥的内切球半径为,则三棱锥体积   

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在平面几何里,有勾股定理:“设的两边AB、AC互相垂直,则。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得到的正确结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则                     

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

(文科) 给出下列等式: , ,  , ……
请从中归纳出第个等式:   

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

平面上有条直线, 这条直线任意两条不平行, 任意三条不共点, 记这条直线将平面分成部分, 则___________, 时,_________________.)(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若数轴上不同的两点分别与实数对应,则线段的中点与实数对应,由此结论类比到平面得,若平面上不共线的三点分别与二元实数对对应,则的重心                    对应.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图所示,从中间阴影算起,图1表示蜂巢有1层只有一个室,图2表示蜂巢有2层共有7个室,图3表示蜂巢有3层共有19个室,图4表示蜂巢有4层共有37个室. 观察蜂巢的室的规律,指出蜂巢有n层时共有_______个室.
        
2107

查看答案和解析>>

同步练习册答案