精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)当时,求函数的极大值和极小值;
(Ⅱ)当时,恒成立,求的取值范围.

(Ⅰ)极大值为2,极小值为-2;(Ⅱ)

解析试题分析:(Ⅰ)当时,求函数的极大值和极小值,与极值有关,可利用导数解决,先对函数求导,求出导数等零点,在判断导数等零点两边的符号,从而得出极大值和极小值,本题当时,,得,由导数的符号从而得极大值和极小值;(Ⅱ)当时,恒成立,求的取值范围,等价于,又因为,可得恒成立,令 即,解得
试题解析:(Ⅰ)递增区间递减区间,极大值为2,极小值为-2
(Ⅱ)等价于上恒成立。

因为
上恒成立等价于
考点:函数极值,二次函数恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数.
(1)当时,求函数的单调递增区间;
(2)若任取,求函数上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义函数阶函数.
(1)求一阶函数的单调区间;
(2)讨论方程的解的个数;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且直线与曲线相切.
(1)若对内的一切实数,不等式恒成立,求实数的取值范围;
(2)(ⅰ)当时,求最大的正整数,使得任意个实数是自然对数的底数)都有成立;
(ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中,曲线在点处的切线垂直于轴.
(1)求的值;
(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数),为常数),是实数集上的奇函数.
(1)求证:
(2)讨论关于的方程:的根的个数;
(3)设,证明:为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数R,
(1)求函数f(x)的值域;
(2)记函数,若的最小值与无关,求的取值范围;
(3)若,直接写出(不需给出演算步骤)关于的方程的解集

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 ().
(Ⅰ)当时,判断在定义域上的单调性;
(Ⅱ)若上的最小值为,求的值;
(Ⅲ)若上恒成立,试求的取值范围.

查看答案和解析>>

同步练习册答案