【题目】已知定义在R上的函数f(x)=2x-.
(1)若f(x)=,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
【答案】(1)1(2)[-5,+∞).
【解析】
(1)根据绝对值定义分类讨论,通过解一元二次方程得x的值;(2)先根据平方关系化简不等式,并变量分离为对应函数最值问题,最后根据指数函数单调性的最值,即得实数m的取值范围.
解 (1)当x<0时,f(x)=0,无解;
当x≥0时,f(x)=2x-,
由2x-=,得2·22x-3·2x-2=0,
看成关于2x的一元二次方程,解得2x=2或-,
∵2x>0,∴x=1.
(2)当t∈[1,2]时,2t+m≥0,
即m(22t-1)≥-(24t-1),
∵22t-1>0,∴m≥-(22t+1),
∵t∈[1,2],∴-(22t+1)∈[-17,-5],
故m的取值范围是[-5,+∞).
科目:高中数学 来源: 题型:
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量件 | 100 | 94 | 93 | 90 | 85 | 78 |
(1)若销量与单价服从线性相关关系,求该回归方程;
(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。
附:对于一组数据,,……,
其回归直线的斜率的最小二乘估计值为;
本题参考数值:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形, 在上,且面.
(1)求证: 是的中点;
(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若一个四位数的各位数字相加和为,则称该数为“完美四位数”,如数字“”.试问用数字组成的无重复数字且大于的“完美四位数”有( )个
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等差数列中,已知公差, ,且, , 成等比数列.
(1)求数列的通项公式;
(2)求.
【答案】(1);(2)100
【解析】试题分析:(1)根据题意, , 成等比数列得得求出d即可得通项公式;(2)求项的绝对前n项和,首先分清数列有多少项正数项和负数项,然后正数项绝对值数值不变,负数项绝对值要变号,从而得,得,由,得,∴ 计算 即可得出结论
解析:(1)由题意可得,则, ,
,即,
化简得,解得或(舍去).
∴.
(2)由(1)得时,
由,得,由,得,
∴
.
∴.
点睛:对于数列第一问首先要熟悉等差和等比通项公式及其性质即可轻松解决,对于第二问前n项的绝对值的和问题,首先要找到数列由多少正数项和负数项,进而找到绝对值所影响的项,然后在求解即可得结论
【题型】解答题
【结束】
18
【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.
(I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;
(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为 (单位: 元),将该频率视为概率,请回答下面问题:
某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为。
(1)记甲击中目标的次数为,求的概率分布及数学期望;
(2)求乙至多击目标2次的概率;
(3)求甲恰好比乙多击中目标2次的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区2011年至2017年农村居民家庭人均纯收入(单位:千元)的数据如下表:
(I)求关于的线性回归方程;
(II)利用(I)中所求的线性回归方程,分析该地区2011年至2017年农村居民家庭人均纯收入的变化情况,并预测该地区2018年农村居民家庭人均纯收入.
参考公式:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com