̽¾¿º¯Êýf(x)=x+
4
x
£¬x¡Ê(0£¬+¡Þ)
µÄ×îСֵ£¬²¢È·¶¨È¡µÃ×îСֵʱxµÄÖµ£®ÁбíÈçÏ£º
x ¡­ 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7 ¡­
y ¡­ 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 5.8 7.57 ¡­
Çë¹Û²ì±íÖÐyÖµËæxÖµ±ä»¯µÄÌص㣬Íê³ÉÒÔϵÄÎÊÌ⣮
£¨1£©º¯Êýf(x)=x+
4
x
(x£¾0)
ÔÚÇø¼ä£¨0£¬2£©Éϵݼõ£¬º¯Êýf(x)=x+
4
x
(x£¾0)
ÔÚÇø¼ä
 
ÉϵÝÔö£»
£¨2£©º¯Êýf(x)=x+
4
x
(x£¾0)
£¬µ±x=
 
ʱ£¬y×îС=
 
£»
£¨3£©º¯Êýf(x)=x+
4
x
(x£¼0)
ʱ£¬ÓÐ×îÖµÂð£¿ÊÇ×î´óÖµ»¹ÊÇ×îСֵ£¿´ËʱxΪºÎÖµ£¿£¨Ö±½Ó»Ø´ð½á¹û£¬²»ÐèÖ¤Ã÷£©
·ÖÎö£ºÀûÓñíÖÐyÖµËæxÖµ±ä»¯µÄÌص㣬¿ÉÒÔÖªµÀº¯ÊýÖµÊÇÏȼõºóÔö£¬Ö»ÒªÕÒµ½ÁÙ½çµã¼´¿É
½â´ð£º½â£ºÓÉf£¨x£©=x+
4
x
£¬¡àf'£¨x£©=1-
4
x2
=
(x-2)(x+2)
x2
£¬¡ßx¡Ê£¨0£¬+¡Þ£©£¬¡àf'£¨x£©£¾0£¬µÃx£¾2£¬f'£¨x£©£¼0£¬µÃ0£¼x£¼2£¬¼´2Ϊ¼«Ð¡Öµµã
¹Ê£¨1£©f£¨x£©µÄÔöÇø¼äΪ  £¨2£¬+¡Þ£©£»
£¨2£©µ±x=2ʱy×îС=4£»
£¨3£©¡ßf£¨-x£©=-x-
4
x
=-f£¨x£©£¬¡àf£¨x£©ÊÇÆ溯Êý£¬ÓÖÒòΪµ±x=2ʱy×îС=4£¬ËùÒÔy=x+
4
x
£¬x¡Ê(-¡Þ£¬0)ʱ£¬x=-2ʱ£¬y×î´ó=-4
£¨Ã¿Ð¡Ìâ4·Ö£©
µãÆÀ£º¶ÔÓÚ¸ø¶¨½âÎöʽµÄº¯Êý£¬ÅжϻòÖ¤Ã÷ÆäÔÚij¸öÇø¼äÉϵĵ¥µ÷ÐÔÎÊÌ⣬¿ÉÒÔ½áºÏ¶¨ÒåÇó½â£¬¿Éµ¼º¯ÊýÒ²¿ÉÀûÓõ¼Êý½âÖ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=a2x2£¨a£¾0£©£¬g£¨x£©=blnx£®
£¨1£©Èôº¯Êýy=f£¨x£©Í¼ÏóÉϵĵ㵽ֱÏßx-y-3=0¾àÀëµÄ×îСֵΪ
2
£¬ÇóaµÄÖµ£»
£¨2£©¹ØÓÚxµÄ²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©¶ÔÓÚº¯Êýf£¨x£©Óëg£¨x£©¶¨ÒåÓòÉϵÄÈÎÒâʵÊýx£¬Èô´æÔÚ³£Êýk£¬m£¬Ê¹µÃf£¨x£©¡Ýkx+mºÍg£¨x£©¡Ükx+m¶¼³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx+mΪº¯Êýf£¨x£©Óëg£¨x£©µÄ¡°·Ö½çÏß¡±£®Éèa=
2
2
£¬b=e£¬ÊÔ̽¾¿f£¨x£©Óëg£¨x£©ÊÇ·ñ´æÔÚ¡°·Ö½çÏß¡±£¿Èô´æÔÚ£¬Çó³ö¡°·Ö½çÏß¡±µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

̽¾¿º¯Êýf(x)=2x+
8
x
£¬x¡Ê(0£¬+¡Þ)
µÄ×îСֵ£¬²¢È·¶¨È¡µÃ×îСֵʱxµÄÖµ£®ÁбíÈçÏ£º
x ¡­ 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7 ¡­
y ¡­ 16 10 8.34 8.1 8.01 8 8.01 8.04 8.08 8.6 10 11.6 15.14 ¡­
Çë¹Û²ì±íÖÐyÖµËæxÖµ±ä»¯µÄÌص㣬Íê³ÉÒÔϵÄÎÊÌ⣮
£¨1£©º¯Êýf(x)=2x+
8
x
(x£¾0)
ÔÚÇø¼ä£¨0£¬2£©Éϵݼõ£»º¯Êýf(x)=2x+
8
x
(x£¾0)
ÔÚÇø¼ä
£¨2£¬+¡Þ£©
£¨2£¬+¡Þ£©
ÉϵÝÔö£®µ±x=
2
2
ʱ£¬y×îС=
4
4
£®
£¨2£©Ö¤Ã÷£ºº¯Êýf(x)=2x+
8
x
(x£¾0)
ÔÚÇø¼ä£¨0£¬2£©µÝ¼õ£®
£¨3£©Ë¼¿¼£ºº¯Êýf(x)=2x+
8
x
(x£¼0)
ʱ£¬ÓÐ×îÖµÂð£¿ÊÇ×î´óÖµ»¹ÊÇ×îСֵ£¿´ËʱxΪºÎÖµ£¿£¨Ö±½Ó»Ø´ð½á¹û£¬²»ÐèÖ¤Ã÷£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìÏÂÁбí¸ñ£¬Ì½¾¿º¯Êýf(x)=x+
4
x
£¬x¡Ê(0£¬+¡Þ)
µÄÐÔÖÊ£¬
x ¡­ 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7 ¡­
y ¡­ 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57 ¡­
£¨1£©Çë¹Û²ì±íÖÐyÖµËæxÖµ±ä»¯µÄÌص㣬Íê³ÉÒÔϵÄÎÊÌ⣮
º¯Êýf(x)=x+
4
x
(x£¾0)
ÔÚÇø¼ä£¨0£¬2£©Éϵݼõ£»
º¯Êýf(x)=x+
4
x
(x£¾0)
ÔÚÇø¼ä
£¨2£¬+¡Þ£©
£¨2£¬+¡Þ£©
ÉϵÝÔö£®
µ±x=
2
2
ʱ£¬y×îС=
4
4
£®
£¨2£©Ö¤Ã÷£ºº¯Êýf(x)=x+
4
x
ÔÚÇø¼ä£¨0£¬2£©µÝ¼õ£®
£¨3£©º¯Êýf(x)=x+
4
x
(x£¼0)
ʱ£¬ÓÐ×îÖµÂð£¿ÊÇ×î´óÖµ»¹ÊÇ×îСֵ£¿´ËʱxΪºÎÖµ£¿£¨Ö±½Ó»Ø´ð½á¹û£¬²»ÐèÖ¤Ã÷£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÐìÖÝÄ£Äâ ÌâÐÍ£º½â´ðÌâ

É躯Êýf£¨x£©=a2x2£¨a£¾0£©£¬g£¨x£©=blnx£®
£¨1£©Èôº¯Êýy=f£¨x£©Í¼ÏóÉϵĵ㵽ֱÏßx-y-3=0¾àÀëµÄ×îСֵΪ2
2
£¬ÇóaµÄÖµ£»
£¨2£©¹ØÓÚxµÄ²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©¶ÔÓÚº¯Êýf£¨x£©Óëg£¨x£©¶¨ÒåÓòÉϵÄÈÎÒâʵÊýx£¬Èô´æÔÚ³£Êýk£¬m£¬Ê¹µÃf£¨x£©¡Ýkx+mºÍg£¨x£©¡Ükx+m¶¼³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx+mΪº¯Êýf£¨x£©Óëg£¨x£©µÄ¡°·Ö½çÏß¡±£®Éèa=
2
2
£¬b=e£¬ÊÔ̽¾¿f£¨x£©Óëg£¨x£©ÊÇ·ñ´æÔÚ¡°·Ö½çÏß¡±£¿Èô´æÔÚ£¬Çó³ö¡°·Ö½çÏß¡±µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸