精英家教网 > 高中数学 > 题目详情
15.在(1+x)+(1+x) 2+(1+x) 3+…+(1+x) 9的展开式中,x2的系数等于(  )
A.121B.120C.84D.45

分析 在1+(1+x)+(1+x)2+…+(1+x)9的展开式中,x2项的系数是C22+C32+…+C92=C103,即可得出结论.

解答 解:在1+(1+x)+(1+x)2+…+(1+x)9的展开式中,x2项的系数是C22+C32+…+C92=C103=120.
故选:B.

点评 本题考查二项式系数的性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如果一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.80-$\frac{20}{3}$πB.80+$\frac{20}{3}$πC.112+(2$\sqrt{29}$-4)πD.112+2$\sqrt{29}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-mx+m,m、x∈R.
(1)若关于x的不等式f(x)>0的解集为R,求m的取值范围;
(2)若实x1,x2数满足x1<x2,且f(x1)≠f(x2),证明:方程f(x)=$\frac{1}{2}$[f(x1)+f(x2)]至少有一个实根x0∈(x1,x2);
(3)设F(x)=f(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2
(1)求a,b的值;
(2)设函数g(x)=f(x)-2x+2,求g(x)在其定义域上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b∈R,i是虚数单位,若a+i与3-bi互为共扼复数,则(a-bi)2=(  )
A.10+6iB.8+6iC.8-6iD.10-6i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=cos4x-sin4x.下列结论正确的是(  )
A.函数f(x)在区间[0,$\frac{π}{2}$]上是减函数B.函数f(x)的图象关于原点对称
C.f(x)的最小正周期为$\frac{π}{2}$D.f(x)的值域为[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sin(α-2β)=-$\frac{2}{3}$,cos(2α-β)=$\frac{1}{4}$,其中0<α<$\frac{π}{4}$,$\frac{π}{2}$<β<$\frac{3π}{4}$,则cos(α+β)=$\frac{2\sqrt{15}-\sqrt{5}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知α,β均为锐角,且cosα=$\frac{2\sqrt{5}}{5}$,sin(α-β)=-$\frac{3}{5}$,则sinβ的值为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2\sqrt{5}}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,长方体ABCD-A1B1C1D1中,AB=2,BC=CC1=1,点P是CD上的一点,PC=λPD.
(Ⅰ)若A1C⊥平面PBC1,求λ的值;
(Ⅱ)设λ1=1,λ2=3所对应的点P为P1,P2,二面角P1-BC1-P2的大小为θ,求cosθ的值.

查看答案和解析>>

同步练习册答案