精英家教网 > 高中数学 > 题目详情
已知R上的函数f(x)=
1
3
ax3+
1
2
bx2+cx(a<b<c),在x=1时取得极值,且y=f(x)的图象上有一点处的切线斜率为-a.
(1)证明:0≤
b
a
<1;
(2)若f(x)在区间(s,t)上为增函数,证明:1≥t>s>-2且t-s<3;
(3)对任意满足以上条件的a,b,c,若不等式f′(x)+a<0对任意x≥k恒成立,求k的取值范围.
(1)证明:求导函数,可得f′(x)=ax2+bx+c,
∵函数在x=1时取得极值,
∴a+b+c=0,
∵函数在x=1时取得极值,
∵a<b<c,
∴a<b<-(a+b),
∴-
1
2
b
a
<1
∵切线斜率为-a,则关于x的方程f′(x)=-a有根,
即ax2+bx-b=0有根,
∴b2+4ab=b(4a+b)≥0
b
a
≤-4
b
a
≥0

∵-
1
2
b
a
<1
∴0≤
b
a
<1;
(2)证明:方程f′(x)=ax2+bx-(a+b)=0
∴b2+4a(a+b)>0
∵f′(1)=0
∴方程f′(x)=ax2+bx-(a+b)=0的两根为1和-
b
a
-1

当且仅当-
b
a
-1<x<1
时,f′(x)>0
∴f(x)在[-
b
a
-1,1]
上为增函数,
∴1≥t>s≥-
b
a
-1
>-2且0<t-s≤
b
a
+2
<3;
(3)若f′(x)+a=ax2+bx-b=a(x2+
b
a
x-
b
a
)<0对a、b恒成立,
t=
b
a
∈[0,1),则g(t)=(x-1)t+x2>0对t∈[0,1)恒成立,
即g(1)≥0,g(0)>0恒成立 
解得x≤
-1-
5
2
或x≥
-1+
5
2

k≥
-1+
5
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=x2-(3-a)x+2(1-a)(其中a∈R).
(I)求f(2)的值;
(II)解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),g(x)分别满足:f(1+x)+f(1-x)=0,g(-x)=g(x),则下列函数中,一定为奇函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•烟台三模)已知R上的函数f(x)=
1
3
ax3+
1
2
bx2+cx(a<b<c),在x=1时取得极值,且y=f(x)的图象上有一点处的切线斜率为-a.
(1)证明:0≤
b
a
<1;
(2)若f(x)在区间(s,t)上为增函数,证明:1≥t>s>-2且t-s<3;
(3)对任意满足以上条件的a,b,c,若不等式f′(x)+a<0对任意x≥k恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2007年山东省烟台市高考数学三模试卷(理科)(解析版) 题型:解答题

已知R上的函数f(x)=ax3+bx2+cx(a<b<c),在x=1时取得极值,且y=f(x)的图象上有一点处的切线斜率为-a.
(1)证明:0≤<1;
(2)若f(x)在区间(s,t)上为增函数,证明:1≥t>s>-2且t-s<3;
(3)对任意满足以上条件的a,b,c,若不等式f′(x)+a<0对任意x≥k恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案