4£®ÒÔϹØÓÚÍÖÔ²µÄÃüÌâÖÐÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
?¢Ù¡°-3£¼m£¼5¡±ÊÇ¡°·½³Ì$\frac{x^2}{5-m}+\frac{y^2}{m+3}$=1±íʾÍÖÔ²¡±µÄ³äÒªÌõ¼þ£»
?¢ÚÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖª¡÷ABCµÄ¶¥µãA£¨-3£¬0£©£¬B£¨3£¬0£©ÇÒ¶¥µãCÔÚÍÖÔ²$\frac{x^2}{25}+\frac{y^2}{16}$=1ÉÏ£¬Ôò$\frac{sinA+sinC}{sinB}$=$\frac{5}{3}$£»
?¢ÛÍÖÔ²C£º$\frac{x^2}{16}+\frac{y^2}{9}$=1Éϵĵ㵽ֱÏßl£ºx+y=6¾àÀëµÄ×îСֵΪ$\sqrt{2}$£»
¢ÜÍÖÔ²C£º$\frac{x^2}{4}+{y^2}$=1µÄÄÚ½ÓƽÐÐËıßÐÎABCDÃæ»ýµÄ×î´óÖµÊÇ4£®
A£®1B£®2C£®3D£®4

·ÖÎö ¢Ù·½³Ì$\frac{x^2}{5-m}+\frac{y^2}{m+3}$=1±íʾÍÖÔ²?$\left\{\begin{array}{l}{5-m£¾0}\\{m+3£¾0}\\{5-m¡Ùm+3}\end{array}\right.$£¬½â³ö¼´¿ÉÅжϳö½áÂÛ£»
?¢ÚÓÉÍÖÔ²$\frac{x^2}{25}+\frac{y^2}{16}$=1£¬¿ÉµÃAC+BC=2a=10£¬$\frac{AC}{sinB}=\frac{BC}{sinA}$=$\frac{AB}{sinC}$£¬$\frac{sinA+sinB}{sinC}$=$\frac{AC+BC}{AB}$=$\frac{10}{6}$£¬¼´¿ÉÅжϳö½áÂÛ£»
?¢ÛÉèÍÖÔ²CÉϵĵãP£¨4cos¦È£¬3sin¦È£©£¬ÔòPµ½Ö±Ïßl£ºx+y=6¾àÀëd=$\frac{|5sin£¨¦È+¦Õ£©-6|}{\sqrt{2}}$¡Ý$\frac{\sqrt{2}}{2}$£¬¼´¿ÉÅжϳö½áÂÛ£»
¢ÜÍÖÔ²C£º$\frac{x^2}{4}+{y^2}$=1µÄÄÚ½ÓƽÐÐËıßÐÎΪÄÚ½Ó¾ØÐÎʱABCDÃæ»ýµÄ×î´óֵΪ2ab£¬¼´¿ÉÅжϳö½áÂÛ£®

½â´ð ½â£º?¢Ù·½³Ì$\frac{x^2}{5-m}+\frac{y^2}{m+3}$=1±íʾÍÖÔ²?$\left\{\begin{array}{l}{5-m£¾0}\\{m+3£¾0}\\{5-m¡Ùm+3}\end{array}\right.$£¬½âµÃ-3£¼m£¼5£¬ÇÒm¡Ù1£¬Òò´Ë?¡°-3£¼m£¼5¡±ÊÇ¡°·½³Ì$\frac{x^2}{5-m}+\frac{y^2}{m+3}$=1±íʾÍÖÔ²¡±µÄ±ØÒª³ä·ÖÌõ¼þ£¬Òò´Ë²»ÕýÈ·£»
?¢ÚÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖª¡÷ABCµÄ¶¥µãA£¨-3£¬0£©£¬B£¨3£¬0£©ÇÒ¶¥µãCÔÚÍÖÔ²$\frac{x^2}{25}+\frac{y^2}{16}$=1ÉÏ£¬ÔòAC+BC=2a=10£¬¡à$\frac{AC}{sinB}=\frac{BC}{sinA}$=$\frac{AB}{sinC}$£¬
Ôò$\frac{sinA+sinB}{sinC}$=$\frac{AC+BC}{AB}$=$\frac{10}{6}$=$\frac{5}{3}$£¬Òò´Ë$\frac{sinA+sinC}{sinB}$=$\frac{5}{3}$²»ÕýÈ·£»
?¢ÛÍÖÔ²C£º$\frac{x^2}{16}+\frac{y^2}{9}$=1ÉϵĵãP£¨4cos¦È£¬3sin¦È£©µ½Ö±Ïßl£ºx+y=6¾àÀëd=$\frac{|4cos¦È+3sin¦È-6|}{\sqrt{2}}$=$\frac{|5sin£¨¦È+¦Õ£©-6|}{\sqrt{2}}$¡Ý$\frac{\sqrt{2}}{2}$£¬Òò´Ë²»ÕýÈ·£»
¢ÜÍÖÔ²C£º$\frac{x^2}{4}+{y^2}$=1µÄÄÚ½ÓƽÐÐËıßÐÎΪÄÚ½Ó¾ØÐÎʱABCDÃæ»ýµÄ×î´óÖµ2ab=2¡Á2¡Á1=4£¬ÕýÈ·£®
×ÛÉÏÖ»ÓТÜÕýÈ·£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¶¨Òå±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢ÕýÏÒ¶¨Àí¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢¾ØÐεÄÃæ»ý£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¼ºÖª£¬¼¯ºÏA={-3£¬-1£¬3£¬1}£¬¼¯ºÏB={-2£¬-1£¬0£¬1£¬2}£¬ÔòA¡ÈB£¨¡¡¡¡£©
A£®{-3£¬-2£¬-1£¬1£¬2£¬3}B£®M={-1£¬1}
C£®M={0}D£®M={-3£¬-2£¬-1£¬0£¬1£¬2£¬3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªa£¬b¡Ê£¨0£¬1£©£¬¼ÇM=ab£¬N=a+b-1£¬ÔòMÓëNµÄ´óС¹ØϵÊÇM£¾N£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=2£¬an+1=an-$\frac{4}{{a}_{n+1}-{a}_{n}}$+4£¨n¡ÊN*£©£¬ÔòÊýÁÐ{an}µÄÇ°10ÏîºÍΪ£¨¡¡¡¡£©
A£®110B£®90C£®50D£®20

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªx£¬yÂú×ã1g£¨lgy£©=1g3x+1g£¨3-x£©£¬ÇóyµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬µãMµÄ×ø±êΪ$£¨{\sqrt{3}£¬1}£©$£¬µãNµÄ×ø±êΪ£¨cos¦Øx£¬sin¦Øx£©£¬ÆäÖЦأ¾0£¬Éè$f£¨x£©=\overrightarrow{OM}•\overrightarrow{ON}$£¨OΪ×ø±êÔ­µã£©£®
£¨¢ñ£©Èô¦Ø=2£¬¡ÏAΪ¡÷ABCµÄÄڽǣ¬µ±f£¨A£©=1ʱ£¬Çó¡ÏAµÄ´óС£»
£¨¢ò£©¼Çº¯Êýy=f£¨x£©£¨x¡ÊR£©µÄÖµÓòΪ¼¯ºÏG£¬²»µÈʽx2-mx£¼0µÄ½â¼¯Îª¼¯ºÏP£®µ±P⊆Gʱ£¬ÇóʵÊýmµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êý$f£¨x£©={sin^2}x+2\sqrt{3}sinxcosx-{cos^2}x\;\;£¨x¡ÊR£©$£®
£¨¢ñ£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚºÍÔÚ[0£¬¦Ð]Éϵĵ¥µ÷µÝ¼õÇø¼ä£»
£¨¢ò£©Èô¦ÁΪµÚËÄÏóÏ޽ǣ¬ÇÒ$cos¦Á=\frac{3}{5}$£¬Çó$f£¨\frac{¦Á}{2}+\frac{7¦Ð}{12}£©$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁк¯Êýf£¨x£©ÖУ¬Âú×ã¡°¶ÔÈÎÒâx1¡¢x2¡Ê£¨0£¬+¡Þ£©£¬µ±x1£¼x2ʱ£¬¶¼ÓÐf£¨x1£©£¾f£¨x2£©¡±µÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=£¨x-1£©2B£®f£¨x£©=exC£®f£¨x£©=$\frac{1}{x}$D£®f£¨x£©=ln£¨x+1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®¶þÏîʽ${£¨x-\frac{1}{x^2}£©^6}$Õ¹¿ªÊ½ÖÐx3ϵÊýµÄÖµÊÇ-6£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸